

LLAMA Large Latin American Array

FAPESP-Max Plank Institutes Meeting Jacques Lepine November 2018

Hi guys I will be there

Ministerio de Ciencia, Tecnología e Innovación Productiva Presidencia de la Nación

The Brazilian background in Radio Astronomy

BEAST Background Emission.... launched by balloons 2000-2005

Brazilian Decimetric Array - BDA Cachoeira Paulista

Itapetinga Radome-enclosed 13.7m dish 20-45 GHz

Galactic Emission Mapping GEM INPE

Submillimetric (212 and 405 GHz) telescope for solar observations - El Leoncito, Argentina

International Context

ALMA is the most important project in radioastronomy of the world (USA, Europe, Japan, Canada) -66 radiotelescopes, most with 12m diameter, operating in the range 0.1 to 1 THz approx. In Atacama desert, Chile, 5000 m altitude

APEX European radiotelescope

ALMA

LLAMA objective: installation of a 12 m radiotelescope in the Andes in Argentina at 4800 m altitude for mm/sub-mm astronomy

Agreement FAPESP-USP-Mincyt

Equal contribution from Brazil and Argentina About 20 million dollars investment

Argentinean side: road, local buildings, electricity generators, telecommunications

Brazilian side Acquisition of a VERTEX abtenna

Shared activities

Cooled receivers, cryostats, back-ends, Fast Fourier Transform Spectrometer holographic receiver, data acquisition system, etc Acquired by means of international collaborations, using reserve funds from FAPESP, and Argentinean funds

Collaboration from NRAO, NAOJ (Japan), GARD (Sweden). Important help from NOVA (Groningen) for the receivers

Building of the headquarters in San Antonio de los Cobres

Antena has space for the development of equipment

Optical path, mirrors, criostats

Concept of Nasmyth cabin Optical System

We will start with a descoped Project, only one Nasmyth cabin will be populated (1 cryostat, 2 receivers)

NACOS, including all the mirrors, and calibration loads mechanical system, in Araraquara

Control system for motors in Nasmyth cabin

Equipment needed before first light:

- Optical telescope +câmera, for pointing
- Holographic transmitter and receiver, for the adjustment of panels of the dish

Holographic receiver will be on loan from NRAO

Fast Fourier Transform Spectrometer (RPG)

Prototype IF processor mounted at NOVA

- Signal Input: DC 1.5 GHz
- ADC: 8 bit
- DSPL Polyphase filter bank (FFT)
- Resolution: 212 KHz @1.5 GHz BW
- Channel spacing 183 KHz
- Spectral Channels: 8192 (8K) @1.5 GHz BW

Software team at work

At IAG- São Paulo, May 2016, With participation of 3 Chileans At VERTEX (Duisburg, Germany, testing Commands of antenna May 25, 2016

Team working with cryostat and reveivers, there is 1 Argentinean and 2 Brazilians At NOVA, Groningen

Scientific perspectives

• VLBI images of regions a few times the horizon size of supermassive black holes (e.g. Sgr A*, Cen A, etc.).

Event Horizon Telescope Several mm radiotelescopes with Thousand km separations to observe the Black Hole of our Galaxy

- Galaxy Formation in the Early Universe
- Extragalactic megamasers of water molecules
- Masers of recombination lines of the hydrogen atom.
- Star-formation regions
- Planetary Nebulae and AGB Stars
- Astrochemistry: molecular evolution of interstellar clouds
- Spiral structure of the Galaxy and other galaxies
- Molecular absorption in front of quasars at very high Zs
- Extra-solar planets and proto-planetary disks
- Polarimetry of radio sources and of the Interstellar Medium
- Solar Physics

Time schedule

- Construction of concrete base 2019 feb- June
- Mounting antena 2019 Aug 2019 Nov
- Pointing measurements 2019 Dec-2020 Jan
- Holography 2020 Jan- 2020 Feb

Solar Physics

- LLAMA can extend the frequency coverage up to 1000 GHz with the addition of polarization information. Joint observations with SST (mostly 212 GHz), and the other patrol telescopes from 1 to 90 GHz will complete a spectrum with almost three orders in frequency
- Simultaneous observations at different frequencies will be a plus of LLAMA for the observation of flares. We will be able to measure the delay between the maximum of a flare between frequencies, which is due to the propagation of radiation in the plasma

Comparison of submillimeter active region Flux density spectra with previously published data. From Silva et al. (2005)

Membros da equipe brasileira

•	Jacques Lépine	coordenador	IAG-USP
•	Zulema Abraham	vice-coordenado	ra IAG-USP
•	Carlos Guillermo Giménez de Castro	Dr., Astronomia	, membro CE, Universidade Mackenzie
•	Joaquim Eduardo Rezende Costa	Dr., Astronomia,	, membro CE, Inpe/MCT
•	Fatima Salete Correra	Dr., Engenharia	Escola Politécnica -USP
•	Tânia Pereira Dominici	Dr ,Astronomia	MAST/MCT
•	Antonio Sandro Verri	Dr.,Engenharia	Escola Politécnica- USP
•	César Strauss	Dr., Engenharia	Inpe/MCT
•	Danilo Zanella	MSc., Física,	IAG/USP
•	Marcos Aurelio Luqueze	MSc. , Engenhar	ia Escola Politécnica, USP
•	Sjoerd Themba Timmer	Dr., Computaçâ	io, Radboud University Nijmegen

Colaboradores principais

•	Thijs de	Mentor, ALMA project	
•	Juan José Larrate	Project Manager IAR.Argentina	
•	Juan Pablo Garcia	Project engineer (IAR) Initial planning of electronics	
•	Jacob Kooi	Optical design and much more Caltech	
•	Fernando Santoro	Mechanical design of NACOS (Astro-EME) USA	
•	Carlos Fermino	Mechanical manufacturing of NACOS	
•	Emiliano Rasztoky	Design, layout and installation of instruments (IAR)	
•	Rodrigo Reeves	Project of Calibration Loads	