Fronteras de la Ciencias Salamanca, Spain December 2012

Using Genomics to Improve Response to Neoadjuvant Therapy in Rectal Cancer Patients

FRONTEIRAS DA CIÊNCIA Brasil e Espanhha nos 50 Anos da FAPESP 10 a 14/12/2012 - Salamanca e Madri, Espanha

HOSPITAL SÍRIO-LIBANÊS

Anamaria A. Camargo Molecular Oncology Center Hospital Sírio Libanês São Paulo SP Brazil

Cancer is a Genetic Disease

Caused by the accumulation of genetic and epigenetic alterations in DNA of normal somatic cells

3,000 point mutations hundreds chromosomal aberrations

Alterations in gene expression and cell reprogramming

The hallmarks of cancer

Hanahan & Weinberg Cell, 2011

From Cancer Genetics to Cancer Genomics

1914

Cancer cytogenetics

Gross chromosomal alterations

Cancer Genetics

Gene-specific alterations

2000

1970

Cancer Genomics

Genome-wide alterations

2010

Personalized Medicine

Individual tumor mutational profile

Microscopy

Recombinant DNA

Semi-automated sequencing and microarrays

Next-Gen Sequencing

Why search for genetic alterations in tumor genomes?

Development of alternative therapies

Indirect detection of tumor cells

Specific for tumor cells

Genetic Alterations

Determine tumor charcateristics

Predict disease outcome

Predict treatment response

Laboratory of Cancer Genetics and Genomics at the Ludwig Institute

Major Interest: Cancer Genetics and Genomics

Expertise: Genome-wide methodologies for:

- gene expression analysis (quantitive, qualitative)
- germline polymorphisms (CNV, SNPs)
- somatic alterations (genetic, epigenetic)
- bioinformatics

Early Genome Initiatives in Brazil

NATURE VOL 406 13 JULY 2000 www.nature.com

articles

The genome sequence of the plant pathogen *Xylella fastidiosa*

The Xylella fastidiesa Consertium of the Organization for Nucleotide Sequencing and Analysis*, São Paulo, Brazil

The complete genome sequence of *Chromobacterium violaceum* reveals remarkable and exploitable bacterial adaptability

11660-11665 | PNAS | September 30, 2003 | vol. 100 | no. 20

Brazilian National Genome Project Consortium*

JOLIEGU, OF BACTIBLOCOLV, Aug. 2005, p. 5568-5577 0021-9193/05/\$08.00+0__doi:10.1128/JB.187.16.5568-5577.2005 Copyright © 2005, American Society for Microhiology. All Rights Reserved. Vol. 187, No. 16

Swine and Poultry Pathogens: the Complete Genome Sequences of Two Strains of Mycoplasma hyopneumoniae and a Strain of Mycoplasma synoviae[†]

Ana Tereza R. Vasconcelos,³ Henrique B. Ferreira,² Cristiano V. Bizarro,² Sandro L. Bonatto,³ Marcos O. Carvalho,² Paulo M. Pinto,² Darcy F. Almeida,⁴ Luiz G. P. Almeida,¹ Rosana Almeida,⁵ Leonardo Alves-Filho,² Enedina N. Assunção,⁶ Vasco A. C. Azevedo,⁷ Maurício R. Bogo,³ Marcelo M. Brigido,⁶ Marcelo Brocchi,^{5,6} Helio A. Burity,¹⁰ Anamaria A. Camargo,¹¹

Cancer Genome Initiative in Brazil

PNAS | October 9, 2001 | vol. 98 | no. 21 | 12103-12108

The contribution of 700,000 ORF sequence tags to the definition of the human transcriptome

Anamaria A. Camargo*, Helena P. B. Samaia*, Emmanuel Dias-Neto*, Daniel F. Simão*, Italo A. Migotto*, Marcelo R. S. Briones^b, Fernando F. Costa*, Maria Aparecida Nagal*, Sergio Verjovski-Almeida*, Marco A. Zago⁷, Luis Eduardo C. Andrade*, Helaine Carrer^b, Hamza F. A. El-Dorry*, Enilza M. Espreafico¹, Angelita Habr-Gama¹, Daniel Giannella-Neto^k, Gustavo H. Goldman¹, Arthur Gruber*, Christine Hacke¹*, Edna T. Kimura*, Rui M. B. Maciel^a, Suely K. N. Marie*, Elizabeth A. L. Martins*, Marina P. Nobrega*, Maria Luisa Paçó-Larson¹, Maria Inés M. C. Pardini*, Gonçalo G. Pereira*, João Bosco Pesquero*, Vanderlei Rodrigues*, Silvia R. Rogatto*, Ismael D. C. G. da Silva*,

13418-13423 | PNAS | November 11, 2003 | vol. 100 | no. 23

The generation and utilization of a cancer-oriented representation of the human transcriptome by using expressed sequence tags

Helena Brentani^a, Otávia L. Caballero^a, Anamaria A. Camargo^a, Aline M. da Silva^b, Wilson Araújo da Silva, Jr.^c, Emmanuel Dias Neto^d, Marco Grivet^a, Arthur Gruber^f, Pedro Edson Moreira Guimaraes^d, Winston Hide^a, Christian Iseli^b, C. Victor Jongeneel^b, Janet Kelso^a, Maria Aparecida Nagalⁱ, Elida Paula Benquique Ojopi^d, Elisson C. Osorio^a, Eduardo M. R. Reis^b, Gregory J. Riggins¹, Andrew John George Simpson^{a,k}, Sandro de Souza^a,

Understand Tumor Biology

Oncagene (2003) 00, 1-8 © 2003 Nature Publishing Group - All rights reserved 0950-9232/03 \$25.00

www.ndure.com/orc

ORIGINAL PAPER

Epigenetic silencing of the adhesion molecule ADAM23 is highly frequent in breast tumors

Fabricio F Costa¹, Newton V Verbisck¹, Anna Christina M Salim¹, Daniela F Ierardi¹, Lilian C Pires¹, Regina M Sasahara², Mari C Sogayar², Silvio M Zanata³, Alan Mackay⁴, Michael O'Hare⁴, Fernando Soares¹, Andrew JG Simpson¹, Anamaria A Camargo^{*,1}

ADAM23 Negatively Modulates $\alpha_{y}\beta_{3}$ Integrin Activation during Metastasis Cancer Res 2009; 69: (13). July 1, 2009

Newton V. Verbisck, ¹ Érico T. Costa, ⁵ Fabricio F. Costa, ⁵ Felícia P. Cavalher, ⁵ Michele D.M. Costa, ⁵ Angelita Muras, ⁵ Valéria A. Paixão, ⁶ Ricardo Moura, ⁵ Mariana F. Granato, ⁵ Daniela F Ierardi, ⁵ Tamara Machado, ⁵ Fabiana Melo, ⁶ Karina B. Ribeiro, ⁶ Isabela W. Cunha, ⁶ Vladmir C.C. Lima, ⁶ Maria do Socorro Maciel, ⁶ André L. Carvalho, ⁶ Fernando F. Soares, ⁶ Silvio Zanata, ⁶ Mari C. Sogayar, ⁷ Roger Chammas, ⁷ and Anamaria A. Camargo

Understand Tumor Biology

Identify Tumor Biomarkers

Variables	Distant metastasis free survival			Disease specific survival		
	HR	95% CI	р	HR	95% CI	р
Positive Lymph Nodes						
0	1.0	ref.		1.0	ref.	
1-3	12.65	2.84 - 56.28	0.001	26.6 6	2.80 - 254.08	0.004
≥4	14.37	3.75 - 55.08	<0.001	16.5 6	1.91 - 143.74	0.011
Tamoxifen						
Absent	1.0	ref.		1.0	ref.	
Present	0.14	0.05 - 0.39	<0.001	0.05	0.01 - 0.28	0.001
ADAM 23						
Unmethylated	1.0	ref.		1.0	ref.	
Single methylated region	6.53	2.07 - 20.57	0.001	2.30	0.52 - 10.07	0.270
Both methylated regions	8.84	2.31 - 33.76	0.001	9.97	1.96 - 50.61	0.006

Identify New Therapeutic Targets

18066-18071 | PNAS | November 28, 2006 | vol. 103 | no. 48

Characterization of a cancer/testis (CT) antigen gene family capable of eliciting humoral response in cancer patients

Raphael B. Parmigiani*, Fabiana Bettoni*, Maria D. Vibranovski**, Marilene H. Lopes*, Waleska K. Martins*, Isabela W. Cunha*, Fernando A. Soares*, Andrew J. G. Simpson*, Sandro J. de Souza*, and Anamaria A. Camargo**

*Ludwig institute for Cancer Research, SP 81528-818, Sac Paulo, Brazil, 'Biochemistry Department, University of Sac Paulo, SP 05508-900, Sac Paulo, Brazil, 'Pathology Department, Hospital A. C. Camargo, Sac Paulo, SP 81528-010, Brazil, and "Ludwig Institute for Cancer Research, Memorial Sicen-Kettering Cancer Center, New York, NY 10158

PNAS

Fig. 6. Detection of antibodies against CTSP-1 recombinant protein in plasma samples from cancer patients. A Western blot using CTSP-1 recombinant protein and plasma samples from prostate cancer patients (lanes 1–7) is shown. An anti-HisTag antibody was used as positive control (lane 8). Molecular weight markers are indicated.

Next-Generation Sequencing Platforms

Reads: 400nt Run: 1.2Mi reads Run: 480M bases Cost: 48k bases/\$ Time: 480k bases/h

Illumina-Solexa

Reads: 75 a 100nt Run: 2Bi reads Run: 200G bases Cost: 10M bases/\$ Time: 1G base/h

Reads: 50nt Run: 2Bi reads Run: 100G bases Cost: 10M bases/\$ Time: 0.7G bases/h

Sequencing Tumor Genomes

Distinct patterns of somatic alterations in a lymphoblastoid and a tumor genome derived from the same individual 6056-6068 Nucleic Acids Research, 2011, Vol. 39, No. 14 doi:10.1093/nar/gkr221

Pedro A. F. Galante¹, Raphael B. Parmigiani¹, Qi Zhao^{2,3}, Otávia L. Caballero³, Jorge E. de Souza¹, Fábio C. P. Navarro¹, Alexandra L. Gerber⁴, Marisa F. Nicolás⁴, Anna Christina M. Salim¹, Ana Paula M. Silva¹, Lee Edsall⁵, Sylvie Devalle³,

Sequencing Tumor Genomes

Distinct patterns of somatic alterations in a lymphoblastoid and a tumor genome derived from the same individual 6056-6068 Nucleic Acids Research, 2011, Vol. 39, No. 14

Pedro A. F. Galante¹, Raphael B. Parmigiani¹, Qi Zhao^{2,3}, Otávia L. Caballero³,

Jorge E. de Souza¹, Fábio C. P. Navarro¹, Alexandra L. Gerber⁴, Marisa F. Nicolás⁴, Anna Christina M. Salim¹, Ana Paula M. Silva¹, Lee Edsall⁵, Sylvie Devalle³,

Somatic Variations	НС	CC1954	HCC1954BL		
	Number	Percentage	Number	Percentage	
Point mutations	274	100	(173)	100.00	
Coding	64	23.36	30	17.3	
Nonsense	2	0.73	3	1.7	
Missense	45	16.42	15	8.7	
Synonymous	17	6.20	12	6.9	
Non-coding	14	5.11	15	8.7	
UTR	13	4.74	13	7.5	
ncRNA	1	0.36	2	1.2	
miRNA	0	0	0	0	
Intronic	179	65.33	114	65.9	
Splice site	0	0	0	0	
Other intronic	179	65.33	114	65.9	
Intergenic	17	6.20	14	8.1	

Sequencing Tumor Genomes

Systematic detection of putative tumor detection suppressor genes through the combined use of exome and transcriptome sequencing

Qi Zhao^{1†}, Ewen F Kirkness^{2†}, Otavia L Caballero^{1†}, Pedro A Galante³, Raphael B Parmigiani³, Lee Edsall⁴, Samantha Kuan⁴, Zhen Ye⁴, Samuel Levy⁵, Ana Tereza R Vasconcelos⁶, Bing Ren⁴, Sandro J de Souza³, Anamaria A Camargo³, Andrew JG Simpson^{1*}, Robert L Strausberg^{1*}

Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing

in breast cancer 246 Genome Research

22:246-258 © 2012 by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/12; www.genome.org

Gary C. Hon,¹ R. David Hawkins,¹ Otavia L. Caballero,² Christine Lo,³ Ryan Lister,⁴ Mattia Pelizzola,⁴ Armand Valsesia,⁵ Zhen Ye,¹ Samantha Kuan,¹ Lee E. Edsall,¹ Anamaria Aranha Camargo,⁶ Brian J. Stevenson,⁵ Joseph R. Ecker,⁴ Vineet Bafna,³ Robert L. Strausberg,^{2,7} Andrew J. Simpson,^{2,7} and Bing Ren^{1,8,9}

Molecular Oncology Center at Hospital Sírio-Libanês

Major Interest: Translational Research in Oncology

Available Platforms:

- NextGen sequencing (5500XL and Illumina)
- Dedicated Bioinformatics Group

Ongoing Projects at MOC-HSL

Rectal Tumors

middle

IOW

~ 40,000 cases/yr US Adenocarcinomas

anal dentate line

7cm

Management of Rectal CancerSurgical Intervention

Local Excision T1/T2 initial tumors

Radical Surgery T3/T4 locally advanced tumors

Management of Rectal Cancer Why search for Alternatives to Radical Surgery?

Overall Morbidity	38%
Mortality	2-3%
Urinary Dysfunction	20%
Sexual Dysfunction	15%
Anorectal Dysfunction	20%
Recurrence Rates	8-40%

Management of Rectal CancerNeoadjuvant Therapy - for locally advanced tumors

Management of Rectal CancerVariable clinical response

No Response

Near Complete

Complete Response

Radical Surgery

Conservative Surgery

Management of Rectal CancerMajor Challenges

#1 Can we avoid the unnecessary toxic effects of QRT in patients with no clinical evidence of response to therapy?

No Response

Radical Surgery

(pTQ)

#2 Can we avoid the unnecessary surgery and comorbidities in patients with complete clinical response to therapy?

Complete Response

Conservative Surgery

#1 Avoid unnecessary CRT toxic effects #2 Avoid unnecessary surgery and morbidity

Next Generation Sequencing SOLiD platform

RNA-seq Gene Expression analysis Paired-end gDNA-seq Chromosomal Rearrangements

Develop a predictive marker for therapeutic response Develop a biomarker for detection of residual disease

Predicting Response to Neoadjuvant Therapy A Total of 47 Differentially Expressed Genes

MUC17

Predicting Response to Neoadjuvant Therapy Gene Signature - Training Set

47 Differentially Expressed Genes

Predicting Response to Neoadjuvant Therapy Gene Signature - Validation Set

Management of Rectal CancerMajor Challanges

#1 Avoid unnecessary CRT toxic effects

#2 Avoid unnecessary surgery and morbidity

Next Generation Sequencing SOLiD platform

RNA-seq Gene Expression analysis Paired-end gDNA-seq Chromosomal Rearrangements

Develop a predictive marker for therapeutic response Develop a biomarker for detection of residual disease

Assessing Response to Neoadjuvant Therapy Personalized Biomarkers

Development of Personalized Tumor Biomarkers Using

Massively Parallel Sequencing

Rebecca J. Leary¹, Isaac Kinde¹, Frank Diehl¹, Kerstin Schmidt¹, Chris Clouser², Cisilya Duncan², Alena Antipova², Clarence Lee², Kevin McKernan², Francisco M. De La Vega³, Kenneth W. Kinzler¹, Bert Vogelstein¹, Luis A. Diaz Jr.¹, and Victor E. Velculescu^{1,*} ¹Ludwig Center for Cancer Genetics and Therapeutics and Howard Hughes Medical Institute, Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231, USA.

Assessing Response to Neoadjuvant Therapy Intrachromossomal rearrangements

Assessing Response to Neoadjuvant Therapy Detecting Circulating DNA in the plasma samples

Patient 1 Incomplete Response

Patient 2 Complete Response

Rectal Cancer Multidisciplinary Approach

Surgeons Angelita Habr-Gama Rodrigo Oliva Perez Joaquim Gama-Rodrigues

Oncologist Jorge Sabbaga

Radiotherapist Wladimir Nadalin Patricia Bailão Aguilar

The Next-Generation

Centro de Oncologia Molecular

Pedro AF Galante **Raphael Parmigiani** Fernanda Koyama **Paula Asprino Fabiana Bettoni** Paola Carpinetti **Elisa Donnard** Fábio Casarotti **Bruna Quevedo** Natalia Felício