Gene interaction networks inference and search for complex disease biomarkers by complex networks analysis and data integration

David Correa Martins Jr david.martins@ufabc.edu.br

Center of Mathematics, Computing and Cognition Federal University of ABC Santo André/SP - Brazil

- Overview
 - About UFABC
 - Systems Biology
 - Research topics
- 2 GRN inference
 - Motivation
 - Definition
 - Approach: feature selection
 - SFFS-BA method
- Prioritization of genes associated to complex diseases
 - Complex diseases
 - Network Medicine hypotheses
 - NERI method Overview
 - NERI method Results
- Conclusion

- Overview
 - About UFABC
 - Systems Biology
 - Research topics
- 2 GRN inference
 - Motivation
 - Definition
 - Approach: feature selection
 - SFFS-BA method
- Prioritization of genes associated to complex diseases
 - Complex diseases
 - Network Medicine hypotheses
 - NERI method Overview
 - NERI method Results
- Conclusion

- Overview
 - About UFABC
 - Systems Biology
 - Research topics
- 2 GRN inference
 - Motivation
 - Definition
 - Approach: feature selection
 - SFFS-BA method
- Prioritization of genes associated to complex diseases
 - Complex diseases
 - Network Medicine hypotheses
 - NERI method Overview
 - NERI method Results

- Overview
 - About UFABC
 - Systems Biology
 - Research topics
- 2 GRN inference
 - Motivation
 - Definition
 - Approach: feature selection
 - SFFS-BA method
- Prioritization of genes associated to complex diseases
 - Complex diseases
 - Network Medicine hypotheses
 - NERI method Overview
 - NERI method Results
- 4 Conclusion

- Overview
 - About UFABC
 - Systems Biology
 - Research topics
- 2 GRN inference
 - Motivation
 - Definition
 - Approach: feature selection
 - SFFS-BA method
- Prioritization of genes associated to complex diseases
 - Complex diseases
 - Network Medicine hypotheses
 - NERI method Overview
 - NERI method Results
- Conclusion

About UFABC

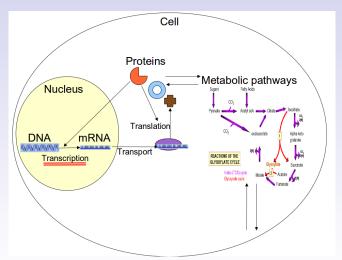
- Universidade Federal do ABC (Federal University of ABC -UFABC)
- 9 years old university
- Growing fast! (\sim 12,000 undergrad students, \sim 1,500 grad students, \sim 550 professors)
- Interdisciplinarity as key to perform relevant science
- Research quality 60% superior to the world average in terms of impact factor (# 1 in Brazil)
- Strong internationalization (# 1 in Brazil)

- Systems Biology: interdisciplinary field which studies the complex networks of interactions occurring in biological systems
- Development of models and approaches to reveal emergent properties of cells, tissues and organs, which work as an integrated system
- Tipically involves studies of several types of biological networks (gene regulation, metabolic, protein interactions, cell signaling, etc...)
- Integration and analysis of massive, complex and heterogeneous datasets (Big Data)

- Systems Biology: interdisciplinary field which studies the complex networks of interactions occurring in biological systems
- Development of models and approaches to reveal emergent properties of cells, tissues and organs, which work as an integrated system
- Tipically involves studies of several types of biological networks (gene regulation, metabolic, protein interactions, cell signaling, etc...)
- Integration and analysis of massive, complex and heterogeneous datasets (Big Data)

- Systems Biology: interdisciplinary field which studies the complex networks of interactions occurring in biological systems
- Development of models and approaches to reveal emergent properties of cells, tissues and organs, which work as an integrated system
- Tipically involves studies of several types of biological networks (gene regulation, metabolic, protein interactions, cell signaling, etc...)
- Integration and analysis of massive, complex and heterogeneous datasets (Big Data)

- Systems Biology: interdisciplinary field which studies the complex networks of interactions occurring in biological systems
- Development of models and approaches to reveal emergent properties of cells, tissues and organs, which work as an integrated system
- Tipically involves studies of several types of biological networks (gene regulation, metabolic, protein interactions, cell signaling, etc...)
- Integration and analysis of massive, complex and heterogeneous datasets (Big Data)



Two main research topics in Systems Biology

- Inference, modeling and simulation of gene regulatory networks (GRN)
- Prioritization of genes associated to complex diseases

- Overview
 - About UFABC
 - Systems Biology
 - Research topics
- 2 GRN inference
 - Motivation
 - Definition
 - Approach: feature selection
 - SFFS-BA method
- Prioritization of genes associated to complex diseases
 - Complex diseases
 - Network Medicine hypotheses
 - NERI method Overview
 - NERI method Results
- Conclusion

- Cell control: result of a multivariate activity of genes
- Derivation of general laws on how the cell control works
- Identification of genes associated to certain biochemica features
- Investigation on how to control the dynamics of the biological system and the best way to do it (most practical, least costly, ...)
- Inference of parameters of a GRN from experimental data is one of the greatest challenges of bioinformatics
 - Small number of samples (dozens) with huge dimensionality (thousands of genes)

- Cell control: result of a multivariate activity of genes
- Derivation of general laws on how the cell control works
- Identification of genes associated to certain biochemical features
- Investigation on how to control the dynamics of the biological system and the best way to do it (most practical, least costly, ...)
- Inference of parameters of a GRN from experimental data is one of the greatest challenges of bioinformatics
 - Small number of samples (dozens) with huge dimensionality (thousands of genes)

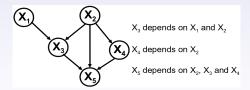
- Cell control: result of a multivariate activity of genes
- Derivation of general laws on how the cell control works
- Identification of genes associated to certain biochemical features
- Investigation on how to control the dynamics of the biological system and the best way to do it (most practical, least costly, ...)
- Inference of parameters of a GRN from experimental data is one of the greatest challenges of bioinformatics
 - Small number of samples (dozens) with huge dimensionality (thousands of genes)

- Cell control: result of a multivariate activity of genes
- Derivation of general laws on how the cell control works
- Identification of genes associated to certain biochemical features
- Investigation on how to control the dynamics of the biological system and the best way to do it (most practical, least costly, ...)
- Inference of parameters of a GRN from experimental data is one of the greatest challenges of bioinformatics
 - Small number of samples (dozens) with huge dimensionality (thousands of genes)

- Cell control: result of a multivariate activity of genes
- Derivation of general laws on how the cell control works
- Identification of genes associated to certain biochemical features
- Investigation on how to control the dynamics of the biological system and the best way to do it (most practical, least costly, ...)
- Inference of parameters of a GRN from experimental data is one of the greatest challenges of bioinformatics
 - Small number of samples (dozens) with huge dimensionality (thousands of genes)

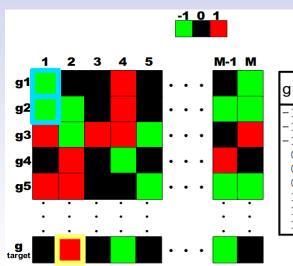
GRN inference - Definition

- GRNs are gene interaction networks where the expression level of a gene is controlled by expression levels of other genes
 - Gene expression signal: abundance of transcribed mRNA
 - They can be viewed as graphs where nodes correspond to genes and edges correspond to dependences between genes

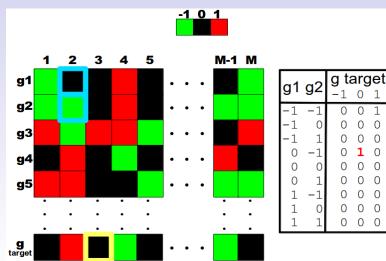


- How to measure the degree of dependence of a gene with regard to other genes?
 - Feature selection
 - Given a target gene, apply a feature selection (search) algorithm which tries to obtain the most relevant genes subset to describe the target behavior
 - Relevance criterion: e.g., mutual information (based on entropy), coefficient of determination (Bayesian error based)

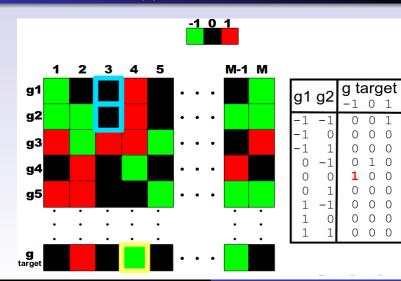
- How to measure the degree of dependence of a gene with regard to other genes?
 - Feature selection
 - Given a target gene, apply a feature selection (search) algorithm which tries to obtain the most relevant genes subset to describe the target behavior
 - Relevance criterion: e.g., mutual information (based on entropy), coefficient of determination (Bayesian error based)

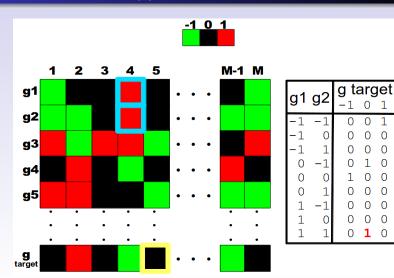


g1	g2	g ta	arç	jet 1	
-1	-1	0	0	1	•
-1	0	0	0	0	
-1	1	0	0	0	
0	-1	0	0	0	
0	0	0	0	0	
0	1	0	0	0	
1	-1	0	0	0	
1	0	0	0	0	
1	1	0	0	0	

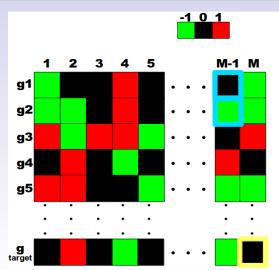


Approach: feature selection





Approach: feature selection



۱۵۱	a 2	g ta	arg	get	
g1	g2	-1	0	1	
-1	-1	0	0	6	
-1	0	7	0	0	
-1	1	0	4	0	
0	-1	0	9	0	
0	0	5	0	0	
0	1	0	0	1	
1	-1	0	0	7	
1	0	0	0	0	
1	1	8	0	0	

GRN inference - Approach: feature selection

g1	g2	g t a	arç	get 1
-1	-1	0	1	6
-1	0	7	0	0
-1	1	0	4	0
0	-1	0	9	0
0	0	5	0	0
0	1	0	0	1
1	-1	0	0	7
1	0	0	0	0
1	1	8	0	0

g3	g5	g t a	arç 0	get 1
-1	-1	2	2	2
-1	0	3	2	2
-1	1	0	3	1
0	-1	2	4	3
0	0	1	1	2
0	1	1	0	1
1	-1	2	3	1
1	0	1	1	0
1	1	4	2	2

Properties of the pair (g1,g2)

- •High mutual information / CoD
 - Almost perfect prediction

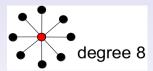
•Strong candidate to be classified between the best pairs (g1 and g2 may be connected to the target gene)

Properties of the pair (g3,g5)

- •Small mutual information / CoD
 - Very bad prediction
 - Discarded

GRN inference - Ongoing research

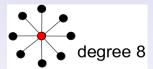
- How to infer "hubs" from small samples? (and how to decide its input degree?)
 - Hub: gene with large input degree



- In binary systems, a gene with degree 8 has a table with $2^8 = 256$ rows
- If we have 30 samples, at least 226 rows are not observed (!!!)

GRN inference - Ongoing research

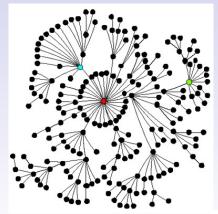
- How to infer "hubs" from small samples? (and how to decide its input degree?)
 - Hub: gene with large input degree



- In binary systems, a gene with degree 8 has a table with 2⁸ = 256 rows
- If we have 30 samples, at least 226 rows are not observed (!!!)

GRN inference - Ongoing research

- In particular, inference of hubs is important to infer scale-free networks
 - Small number of nodes with large input degree
 - Large number of nodes with small input degree
- Also known as Barabási-Albert (BA) network model [Barabasi:2004]



SFFS-BA method

GRN inference - SFFS-BA method

 SFFS-BA: GRN inference method guided by topological scale-free properties [Lopes:2014]

A feature selection technique for inference of graphs from their known topological properties: Revealing scale-free gene regulatory networks

Fabrício M. Lopes a,*, David C. Martins Jr. b, Junior Barrera c, Roberto M. Cesar Jr. c,d

^a Federal University of Technology - Paraná, Brazil

b Federal University of ABC, Brazil

c Institute of Mathematics and Statistics, University of São Paulo, Brazil

d Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazil

- Adaptation of a classical feature selection method (Sequential Floating Forward Search - SFFS) to look for scale free patterns → SFFS-BA
- Comparison involving Sequential Forward Search (SFS), SFFS and SFFS-BA
- Evaluation by simulated artificial gene networks (AGN) generating scale-free topologies and probabilistic Boolean dependences
- Evaluation by real data from Escherichia coli microarrays

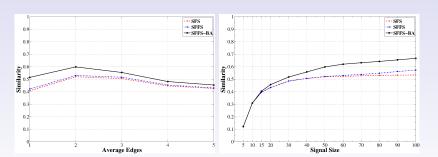
- Adaptation of a classical feature selection method (Sequential Floating Forward Search - SFFS) to look for scale free patterns → SFFS-BA
- Comparison involving Sequential Forward Search (SFS), SFFS and SFFS-BA
- Evaluation by simulated artificial gene networks (AGN) generating scale-free topologies and probabilistic Boolean dependences
- Evaluation by real data from Escherichia coli microarrays

- Adaptation of a classical feature selection method (Sequential Floating Forward Search - SFFS) to look for scale free patterns → SFFS-BA
- Comparison involving Sequential Forward Search (SFS), SFFS and SFFS-BA
- Evaluation by simulated artificial gene networks (AGN) generating scale-free topologies and probabilistic Boolean dependences
- Evaluation by real data from Escherichia coli microarrays

- Adaptation of a classical feature selection method (Sequential Floating Forward Search - SFFS) to look for scale free patterns → SFFS-BA
- Comparison involving Sequential Forward Search (SFS), SFFS and SFFS-BA
- Evaluation by simulated artificial gene networks (AGN) generating scale-free topologies and probabilistic Boolean dependences
- Evaluation by real data from Escherichia coli microarrays

GRN inference - SFFS-BA (summary and results)

Artificial gene networks results



Motivation
Definition
Approach: feature selectic
SFFS-BA method

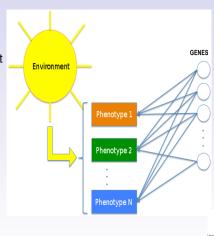
GRN inference - SFFS-BA (summary and results)

E. coli results

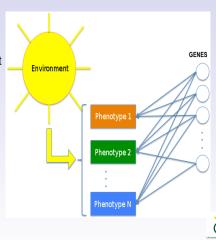
Algorithm	PPV	Sensitivity	Similarity	AUPR(%)
SFS	0.1598	0.0169	0.0520	0.0488 (4.88%)
SFFS	0.2416	0.0315	0.0872	0.0629 (6.29%)
SFFS-BA	0.4878	0.0484	0.1537	0.0786 (7.86%)

- Overview
 - About UFABC
 - Systems Biology
 - Research topics
- GRN inference
 - Motivation
 - Definition
 - Approach: feature selection
 - SFFS-BA method
- Prioritization of genes associated to complex diseases
 - Complex diseases
 - Network Medicine hypotheses
 - NERI method Overview
 - NERI method Results
- Conclusion

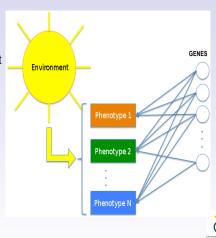
- Complex diseases are polygenic and multifactorial
- Many genes can cause the same phenotype
- A single gene can cause distinct phenotypes
- → studies in complex diseases are challenging
- Distinct studies of a given complex disease usually produce gene lists with very small overlap (small replication)
- Integrative approaches from systems biology, as well as modeling and analysis of complex networks are required



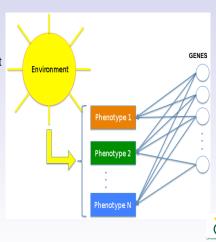
- Complex diseases are polygenic and multifactorial
- Many genes can cause the same phenotype
- A single gene can cause distinct phenotypes
- → studies in complex diseases are challenging
- Distinct studies of a given complex disease usually produce gene lists with very small overlap (small replication)
- Integrative approaches from systems biology, as well as modeling and analysis of complex networks are required



- Complex diseases are polygenic and multifactorial
- Many genes can cause the same phenotype
- A single gene can cause distinct phenotypes
- → studies in complex diseases are challenging
- Distinct studies of a given complex disease usually produce gene lists with very small overlap (small replication)
- Integrative approaches from systems biology, as well as modeling and analysis of complex networks are required



- Complex diseases are polygenic and multifactorial
- Many genes can cause the same phenotype
- A single gene can cause distinct phenotypes
- → studies in complex diseases are challenging
- Distinct studies of a given complex disease usually produce gene lists with very small overlap (small replication)
- Integrative approaches from systems biology, as well as modeling and analysis of complex networks are required



- Modeling of complex network theory properties and Network Medicine hypotheses to prioritize genes
- Hubs: genes/proteins of high degree are considered essential (e.g. TP53)
- Locality Hypothesis: Genes/proteins involved in the same function (or disease phenotype) possess increased tendency to interact with each other
- Modularity Hypothesis: Cellular components associated to a given function (or disease specific phenotype) tend to be in the same cluster
- Parsimony Principle: Molecular pathways usually coincide with the molecular shortest paths between components known to be associated to the disease.

- Modeling of complex network theory properties and Network Medicine hypotheses to prioritize genes
- Hubs: genes/proteins of high degree are considered essential (e.g. TP53)
- Locality Hypothesis: Genes/proteins involved in the same function (or disease phenotype) possess increased tendency to interact with each other
- Modularity Hypothesis: Cellular components associated to a given function (or disease specific phenotype) tend to be in the same cluster
- Parsimony Principle: Molecular pathways usually coincide with the molecular shortest paths between components known to be associated to the disease.

- Modeling of complex network theory properties and Network Medicine hypotheses to prioritize genes
- Hubs: genes/proteins of high degree are considered essential (e.g. TP53)
- Locality Hypothesis: Genes/proteins involved in the same function (or disease phenotype) possess increased tendency to interact with each other
- Modularity Hypothesis: Cellular components associated to a given function (or disease specific phenotype) tend to be in the same cluster
- Parsimony Principle: Molecular pathways usually coincide with the molecular shortest paths between components known to be associated to the disease.

- Modeling of complex network theory properties and Network Medicine hypotheses to prioritize genes
- Hubs: genes/proteins of high degree are considered essential (e.g. TP53)
- Locality Hypothesis: Genes/proteins involved in the same function (or disease phenotype) possess increased tendency to interact with each other
- Modularity Hypothesis: Cellular components associated to a given function (or disease specific phenotype) tend to be in the same cluster
- Parsimony Principle: Molecular pathways usually coincide with the molecular shortest paths between components known to be associated to the disease.

- Modeling of complex network theory properties and Network Medicine hypotheses to prioritize genes
- Hubs: genes/proteins of high degree are considered essential (e.g. TP53)
- Locality Hypothesis: Genes/proteins involved in the same function (or disease phenotype) possess increased tendency to interact with each other
- Modularity Hypothesis: Cellular components associated to a given function (or disease specific phenotype) tend to be in the same cluster
- Parsimony Principle: Molecular pathways usually coincide with the molecular shortest paths between components known to be associated to the disease.

NERI method

 NERI: NEtwork Medicine Relative Importance [Simões:2015]

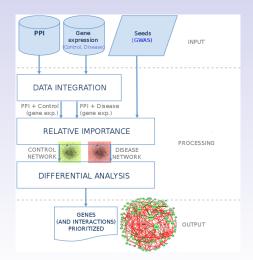
Simões et al. BMC Bioinformatics 2015, 16(Suppl 19):S9 http://www.biomedcentral.com/1471-2105/16/S19/S9

RESEARCH

Open Access

NERI: network-medicine based integrative approach for disease gene prioritization by relative importance

Sérgio N Simões^{1,2*}, David C Martins Jr³, Carlos AB Pereira¹, Ronaldo F Hashimoto¹, Helena Brentani^{4,5,6}



- Modeling the locality, modularity and parsimony hypotheses
- Integration of seeds (genome-wide association studies GWAS), gene expression and protein-protein interaction networks (PPI) data
- Obtainment of two PPI network cuttings around the neighborhood of the seeds: one for control and one for disease conditions
- Cutting: best shortest paths (according to gene expression concordance) connecting the seeds
- Two relative importances are assigned to each gene: one for control and another for disease condition
- Relative importance: mix of fequency along the shortest paths between seeds, concordance of expression along these paths and proximity to the seeds
- Genes with the largest difference in their two relative importances (control/disease) are prioritized

- Modeling the locality, modularity and parsimony hypotheses
- Integration of seeds (genome-wide association studies GWAS), gene expression and protein-protein interaction networks (PPI) data
- Obtainment of two PPI network cuttings around the neighborhood of the seeds: one for control and one for disease conditions
- Cutting: best shortest paths (according to gene expression concordance) connecting the seeds
- Two relative importances are assigned to each gene: one for control and another for disease condition
- Relative importance: mix of fequency along the shortest paths between seeds, concordance of expression along these paths and proximity to the seeds
- Genes with the largest difference in their two relative importances (control/disease) are prioritized

- Modeling the locality, modularity and parsimony hypotheses
- Integration of seeds (genome-wide association studies GWAS), gene expression and protein-protein interaction networks (PPI) data
- Obtainment of two PPI network cuttings around the neighborhood of the seeds: one for control and one for disease conditions
- Cutting: best shortest paths (according to gene expression concordance) connecting the seeds
- Two relative importances are assigned to each gene: one for control and another for disease condition
- Relative importance: mix of fequency along the shortest paths between seeds, concordance of expression along these paths and proximity to the seeds
- Genes with the largest difference in their two relative importances (control/disease) are prioritized

- Modeling the locality, modularity and parsimony hypotheses
- Integration of seeds (genome-wide association studies GWAS), gene expression and protein-protein interaction networks (PPI) data
- Obtainment of two PPI network cuttings around the neighborhood of the seeds: one for control and one for disease conditions
- Cutting: best shortest paths (according to gene expression concordance) connecting the seeds
- Two relative importances are assigned to each gene: one for control and another for disease condition
- Relative importance: mix of fequency along the shortest paths between seeds, concordance of expression along these paths and proximity to the seeds
- Genes with the largest difference in their two relative importances (control/disease) are prioritized

- Modeling the locality, modularity and parsimony hypotheses
- Integration of seeds (genome-wide association studies GWAS), gene expression and protein-protein interaction networks (PPI) data
- Obtainment of two PPI network cuttings around the neighborhood of the seeds: one for control and one for disease conditions
- Cutting: best shortest paths (according to gene expression concordance) connecting the seeds
- Two relative importances are assigned to each gene: one for control and another for disease condition
- Relative importance: mix of fequency along the shortest paths between seeds, concordance of expression along these paths and proximity to the seeds
- Genes with the largest difference in their two relative importances (control/disease) are prioritized

- Modeling the locality, modularity and parsimony hypotheses
- Integration of seeds (genome-wide association studies GWAS), gene expression and protein-protein interaction networks (PPI) data
- Obtainment of two PPI network cuttings around the neighborhood of the seeds: one for control and one for disease conditions
- Cutting: best shortest paths (according to gene expression concordance) connecting the seeds
- Two relative importances are assigned to each gene: one for control and another for disease condition
- Relative importance: mix of fequency along the shortest paths between seeds, concordance of expression along these paths and proximity to the seeds
- Genes with the largest difference in their two relative importances (control/disease) are prioritized

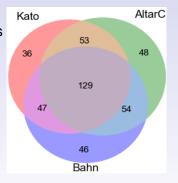
- Modeling the locality, modularity and parsimony hypotheses
- Integration of seeds (genome-wide association studies GWAS), gene expression and protein-protein interaction networks (PPI) data
- Obtainment of two PPI network cuttings around the neighborhood of the seeds: one for control and one for disease conditions
- Cutting: best shortest paths (according to gene expression concordance) connecting the seeds
- Two relative importances are assigned to each gene: one for control and another for disease condition
- Relative importance: mix of fequency along the shortest paths between seeds, concordance of expression along these paths and proximity to the seeds
- Genes with the largest difference in their two relative importances (control/disease) are prioritized

NERI method - Results

- Case study: Schizophrenia
- 30 seed genes obtained from association studies (also known as "core genes")
- KATO (33 C, 34 D), ALTAR (29 C, 21 D) and BAHN (33 C, 34 D) gene expression databases

NERI method - Results

- Intersection of the top 10% genes ranked by the method in each study KATO, ALTAR and BAHN
- Intersection p-value < 10⁻⁵⁸ (hipergeometric test)
- Large replication among the gene expression studies



NERI method - Results

- WebGestalt protein interaction enrichment of the overlap genes list (129 genes)
- Module 26 (glutamate receptor signaling pathway) with 14 genes (green nodes)
 - Such function is known to be associated to schizophrenia

- 1 Overview
 - About UFABC
 - Systems Biology
 - Research topics
- Q GRN inference
 - Motivation
 - Definition
 - Approach: feature selection
 - SFFS-BA method
- Prioritization of genes associated to complex diseases
 - Complex diseases
 - Network Medicine hypotheses
 - NERI method Overview
 - NERI method Results
- Conclusion

Conclusion

Data integration and complex networks analyses are keys to improve GRN inference and gene prioritization processes

Acknowledgements

- FAPESP (procs. 11/50761-2, 13/26644-1, 14/10488-3, 15/01587-0)
- CNPq (procs. 559955/2010-3, 306991/2011-0, 304955/2014-0)
- CAPES
- Collaborators from UFABC, USP, UTFPR, IFES, Hospital A. C. Carmargo, Indian Institute of Technology and Texas A&M University

References

- [Barabási:2004] A. L. Barabási, Z. Oltvai (2004). Network biology: Understanding the cell's functional organization. Nature Reviews Genetics, 5:101-113.
- [Barabási:2011] A. L. Barabasi, N. Gulbahce, and J. Loscalzo (2011).
 Network medicine: A network-based approach to human disease. Nat Rev Genet, 12(1):56-68.
- [Lopes:2014] F. M. Lopes, D. C. Martins-Jr, J. Barrera, and R. M. Cesar-Jr (2014). A feature selection technique for inference of graphs from their known topological properties: Revealing scale-free gene regulatory networks. Information Sciences, 272:1-15.
- [Simoes:2015] S. N. Simoes, D. C. Martins-Jr, C. A. B. Pereira, R. F. Hashimoto, and H. Brentani. (2015). NERI: network-medicine based integrative approach for disease gene prioritization by relative importance. BMC Bioinformatics, 16(19):1-14.

Thank You!

