Identification and characterisation of metabolic QTL in *Arabidopsis thaliana*

Metabolome analyses of heterosis in maize roots

Bioen Workshop on Metabolomics of Sugarcane Jan Lisec, 07.12.2009

Metabolomics allows a new perspective on plant systems

- Metabolite Quantitative Trait Loci (mQTL) enable to connect phenotype and genotype in *Arabidopsis thaliana*
 - Recombinant Inbred Line and Introgression Line populations
 - Heterosis and quantitative genetics
 - Identification and characterization of (heterotic) mQTL
 - Relation of metabolic profiles and plant biomass
- Metabolome analyses suggest a different view on heterosis in maize roots
 - Metabolic correlation networks
 - Heterosis on the molecular and whole plant level

____ _ _____

Plants are the primary producers of biomass

Max-Planck-Institut für Molekulare Pflanzenphysiologie From seed to seed – monitoring plant development on a molecular level to better understand growth

lisec@mpimp-golm.mpg.de

Arabidopsis and maize are excellent model plants for quantitative genetics and heterosis, respectively

- short life cycle
- modest growth requirements
- small and fully sequenced genome
- knockout lines, transgenic lines
- plethora of available data
- of low economic importance

- more than 100% best-parent heterosis for yield
- heterosis effect agronomical used since more than 100 years
- of high economic importance
- difficult to cultivate in higher number in a controlled environment

Arabidopsis thaliana

lisec@mpimp-golm.mpg.de

- Metabolome: The entirety of small molecules within a cell.
- GC-MS: a combination of a separation method (Gas Chromatography) with an detection system (Mass Spectrometry)
- Metabolome mirrors the biological endpoint or actual state of a plant closer than its genes.

lisec@mpimp-golm.mpg.de

Allowed the evaluation of >2000 samples for 181 metabolic traces (85 known)

lisec@mpimp-golm.mpg.de

Lisec et al. (2006, Nat Prot) São Paulo, 07.12.2009

- Introgression Lines (Near Isogenic Lines)
- Recombinant Inbred Lines
- Test Crosses (TC)

$$V_P = V_G + V_E + V_G \times V_E$$

lisec@mpimp-golm.mpg.de

Törjek et al. (2003, Plant J, 2006, TAG, 2008, J Hered)

Recombinant Inbred Lines and Introgression Lines were used to identify Quantitative Trait Loci (QTL)

- QTL indicates a region of the genome bearing loci which influence the phenotype of an observed trait (e.g. metabolite concentration or biomass)
- quantitative traits usually polygenic inherited
 - IL population: - 97 ILs (6 repl.) - 45 IL-TCs (6 repl.) - P_{1,2}, F_{1-a,1-b} (~50 repl.)

RIL population:

- 369 RILs (1 repl.)
- 735 RIL-TCs (1 repl.)
- P_{1,2}, F_{1-a,1-b} (~10 repl.)

k-Institut lare Pflanzenphysiologie

lisec@mpimp-golm.mpg.de

Lisec et al. (2008, Plant J) São Paulo, 07.12.2009

lisec@mpimp-golm.mpg.de

Max - Planck - Institut für Molekulare Pflanzenphysiologie

A birds view on RIL QTL for known metabolites

- max.6 per Metab.
- PVE: 7.1% (1.7% - 52.1%)
- Hotspots at 4/4 and 5/76
- average QTL width: 6cM

lisec@mpimp-golm.mpg.de

Lisec et al. (2008, Plant J) São Paulo, 07.12.2009

Candidate genes for metabolic QTL were identified using AraCyc 3.5 database

- mQTL
- direct AGI
- pathway AGI
- ** IL confirmation level
- 3 approximate LOD

lisec@mpimp-golm.mpg.de

Lisec et al. (2008, Plant J) São Paulo, 07.12.2009

Lisec et al. (2008, Plant J) São Paulo, 07,12,2009

lisec@mpimp-golm.mpg.de

Max-Planck-Institut

für Molekulare Pflanzenphysiologie

Expected Differences:

Candidate Genes to test selected according to: Syno AGLOD valu Gene function LOD_{RIL} PIL Intron bp Metabolite nymus AT Confirmation level in IL-population Inositol MIOX1 (myo-inositol oxygenase) 0.047 6.5 tyrosine aminotransferase 0.054 AT5 Mamber of known genes in Aracy T895 ine 9.6 AT1G43710 2064 Ethanolamine glutamate decarboxylase Nicotinic acid • Catalyzed reaction 1446 Glycine glycyl-tRNA synthetase 0 # mQTL 2 12 AT4G15210 ? 3132 Maltose beta-amylase activity # path 0 0 4 2 # dAGI AT2G38400 ? 2660 4-Aminobutyric acid glyoxylate aminotransfera 0 0 2 #pAGI - 3 AT4G05632 Glucose 1-phosphate unknown (G3P DH) 0 0 747 4 Nicotinic acid 0 0 891 unknown (Nitrilase)

Metabolite QTL Candidate genes can be confirmed using knock-out lines

lisec@mpimp-golm.mpg.de

David Riewe, IPK Gatersleben São Paulo, 07.12.2009

Summary for metabolic QTL

- In total 157 metabolic QTL (for 84 out of 181 metabolites) were found using Recombinant Inbred Lines.
- Introgression Lines allowed the independent confirmation for 11-55% of all mQTL and revealed 160 additional effects at p ≤ 0.001.
- Candidate genes (using AraCyc 3.5) were identified for 24-67% of all mQTL.
- Amino acid substitutions were determined to be present in four of eight re-sequenced candidate genes.
- Experiments with knock-out lines showed significant changes in the respective metabolite levels for several candidate genes.

Inositol

ITCm *

* path 6 # 640

#pAGI

Significance level	Number of significant changes	FDR (%)	Number of confirmed RIL QTL	Confirmed RIL QTL (%)	Average R ² of confirmed RIL QTL (%)	Average R ² of non confirmed RIL QTL (%)	Confirmed allelic effect	Confirmed allelic effect (%)
0.001	177	9.61	17	11.33	11.62	6.67	16	94
0.01	773	22.01	41	27.33	10.17	6.12	38	93
0.05	2511	33.88	83	55.33	7.79	6.54	68	82
0.1	3941	43.17	99	66.00	7.45	6.79	80	81

AGI	Substi tution	Syno nymus	Intron	bp	Metabolite	Gene function		P _{IL}
AT1G14520	3	6	7	2169	Inositol	MIOX1 (myo-inositol oxygenase)	6.5	0.047
AT5G53970	1	1	0	2240	Tyrosine	tyrosine aminotransferase	9.6	0.054
AT1G43710	0	1	1	2064	Ethanolamine	glutamate decarboxylase	8.7	0.000
AT3G44740	1	0	0	1446	Glycine	glycyl-tRNA synthetase	8.0	0.015
AT4G15210	0	0	4	3132	Maltose	beta-amylase activity	9.9	-
AT2G38400	0	0	2	2660	4-Aminobutyric acid	glyoxylate aminotransferase	3.6	0.004
AT4G05632	0	0	4	747	Glucose 1-phosphate	unknown (G3P DH)	10.7	0.013
AT5G15600	1	0	0	891	Nicotinic acid	unknown (Nitrilase)	13.2	0.013

- Heterosis: increased fitness of a hybrid cross compared to its homozygous parents
- 'fitness': biomass, size, yield, fertility, speed of development and stress resistance

- Best-Parent-Heterosis: the hybrid increase over the better performing parent
- Mid-Parent-Heterosis: the hybrid deviation from the parental mean

• the dominance theory: a complementation of deleterious alleles

• the overdominance theory: an interaction of two alleles

Max-Planck-Institut für Molekulare Pflanzenphysiologie lisec@mpimp-golm.mpg.de

• in RILs and RIL-TCs:

 $AMPH_{P_1} = TC_{P_1,i} - 0.5(RIL_i + \overline{P_1})$ $AMPH_{P_2} = TC_{P_2,i} - 0.5(RIL_i + \overline{P_2})$ $Z_1 = TC_{P_1,i} + TC_{P_2,i}$ $Z_2 = TC_{P_1,i} - TC_{P_2,i}$

in ILs and IL-TCs:
t-test and mean value comparison

- 232 hmQTL (AMPH_{Col}, AMPH_{C24}, Z₂)
- PVE: 4.8% (1.3-18.5%)
- Overlap with mQTL is 14% $AMPH_{P_1} = TC_{P_1,i} - 0.5(RIL_i + P_1)$ $AMPH_{P_2} = TC_{P_2,i} - 0.5(RIL_i + \overline{P_2})$ PH_{col} $Z_1 = TC_{P_1,i} + TC_{P_2,i}$

lisec@mpimp-golm.mpg.de

Lisec et al. (2009, Plant J) São Paulo, 07.12.2009

Mode of Inheritance for metabolic QTL identified in ILs/IL-TCs reveals mainly dominant effects

IL

Ascorbic acid L-TC

9

2

0

ŝ

6

lisec@mpimp-golm.mpg.de

634 significant effects (at a FDR of 5%)

Lisec et al. (2009, Plant J) São Paulo, 07.12.2009

lisec@mpimp-golm.mpg.de

Meyer *et al.* (2007, *PNAS*) São Paulo, 07.12.2009

- Data analysis of metabolic profiles from large scale experiments has been improved. (RI correction, deconvolution errors, peak detection)
- Metabolic QTL and heterotic metabolic QTL were identified in two independent experiments (RILs, RIL-TCs and ILs, IL-TCs) and further characterized.
- Enzyme candidate genes for QTL were suggested and amino acid substitutions have been found in sequenced candidates.
- Heterosis effects for metabolites were found (P_{1,2}, F_{1-a,1-b}) and characterized as mainly dominant (ILs).
- A comparison of RIL/IL for mQTL and hmQTL suggests both approaches to be complementary, especially for heterotic effects.
- It was shown that a complex trait (biomass) can be predicted based on a metabolic profile. (CCA, R = 0.58)

Maize roots were analyzed for 112 metabolites using GC-MS (in 6 replicates of 6 parental and 14 hybrid genotypes)

lisec@mpimp-golm.mpg.de

Major variance in root metabolites separates parents from hybrids (PC1) and European from American lines (PC2)

PC 1 (24.77%)

metabolite correlation networks (heterosis in network

properties)

- metabolite-phenoty correlations
- metabolite heterosi

lisec@mpimp-golm.mpg.de

Polar plots reveal differences in metabolite heterosis pattern between reciprocal hybrids, thus raising more questions than providing answers

lisec@mpimp-golm.mpg.de

Lower variability in metabolite levels of hybrids compared to parents suggests a metabolic optimum which could explain heterosis.

lisec@mpimp-golm.mpg.de

Two representative examples for metabolite variance in parental and hybrid genotypes show additive and overdominant heterosis pattern.

Lisec *et al.* (2009, *submitted*) São Paulo, 07.12.2009

A paternal effect is observed for the network property Average Degree only in the American lines.

lisec@mpimp-golm.mpg.de

The correlation between Average Degree and root fresh weight is overlaid by a paternal effect.

Max -Planck - Institut für Molekulare Pflanzenphysiologie

lisec@mpimp-golm.mpg.de

- Maize metabolome allows to distinguish ecotypes and homzygous from heterozygous lines.
- A metabolic optimum for given environmental conditions is suggested. Evidence for the metabolic optimum is the lower variation of metabolite levels in hybrids and a significant correlation of a deviation from the supposed optimum with biomass.
- Metabolite correlation networks differentiating homozygous and heterozygous genotypes could be calculated.
- A paternal effect for network properties of metabolite correlation networks was observed.

AG Altmann

AG Willmitzer

AG Selbig/Walther

AG Kopka

AG Fernie

Barbara Kusterer (Uni Hohenheim) Lilla Roemisch-Margl (TU München) Achim Walter (FZ Jülich) David Riewe (IPK Gatersleben)

