Metabolomics-oriented Bioinformatics at the MPI for Molecular Plant Physiology.

Dirk Walther Head Bioinforamtics group Max Planck Institute for Molecular Plant Physiology Potsdam-Golm walther@mpimp-golm.mpg.de

Image © 2005 DigitalGlobe

© 2005 TeleAtlas

Eye alt 1009 ft

Overview

GC/MS Data

- Metabolomics databases: The Golm Metabolome Database (GMD)
- Automated GC/MS-spectra interpretation

Metabolites

 Metabolite-transcript causal relationships from time course data

Pathways

 Metabolomics-assisted genome annotation in Chlamydomonas reinhardtii

Genomes

From GC/MS Data to Metabolites

GMD – Golm Metabolome Database http://gmd.mpimp-golm.mpg.de/

- Kopka et al., (2005) GMD@CSBDB: The Golm metabolome database. Bioinformatics 21:1635-1638
- Hummel et al. (2007) *The Golm Metabolome Database: a Database for GC-MS based Metabolite Profiling*. In: Hohmann, S. (ed) Topics in Current Genetics: Nielsen, J., Jewett, M. (eds) Metabolomics. Springer-Verlag, Berlin Heidelberg New York,

GMD – Golm Metabolome Database http://gmd.mpimp-golm.mpg.de/

GMD in numbers

Reference substances:	3,056
Metabolites:	830
Analytes (derivatized compound):	3,175
Number of spectra:	24,383
Profiles (samples):	668

- Kopka et al., (2005) GMD@CSBDB: The Golm metabolome database. Bioinformatics 21:1635-1638
- Hummel et al. (2007) *The Golm Metabolome Database: a Database for GC-MS based Metabolite Profiling*. In: Hohmann, S. (ed) Topics in Current Genetics: Nielsen, J., Jewett, M. (eds) Metabolomics. Springer-Verlag, Berlin Heidelberg New York,

GMD – Inventory, Reference substances

nucleoside

pyrimidine

1%

1%

others less than 1%:

aldehyde, alkaloid, amide, calystegine, chalcone, flavonoid, imide, lactam, nucleotide, purine, stilbene

Annotation of GC/MS-spectra

Annotation via GC/MS-spectra comparisons

Annotation via GC/MS-spectra comparisons

Knowledge-based annotation of GC/MS-spectra

Identification via characteristic mass peaks

Spectra interpretation

Scsibrany & Varmuza (1992) J Anal Chem Varmuza & Werther (1996). Chem. Inf. Comput. Sci.

Annotation of GC/MS-spectra using decision trees

Compound class predictions based on fragments

RI VAR5

m.-diff

ratio lg

22

- - 2 3

- 2

-

2 - 4 2

2 2 4 2 4

Annotation of user-submitted GC/MS spectra at gmd.mpimp-golm.mpg.de

	GMD GMD GOLM ME FAB 21-OIME DATA BASE
home	PREDICTION OF FUNCTIONAL GROUPS
ms analysis	This page facilitates the search of analytes and metabolites within the GMD by means of user submitted GC-MS spectra constituted by an alkane retention index (if vailable) and mass intensities ratios.
decision trees data entities web services	In addition, a functional group prediction will help to characterise those metabolites without available reference mass spectra included in the GMD so far. Instead, the unknown metabolite is characterised by predicted presence or absense of functional groups.
publications	Query
help	Enter the GC-column type the alkane retention index is based on!
	Enter the alkane retention index here (if neither an alkane RIs for VAR5 nor MDN35 is available in your setup 1898 please select 'none' in the input field above)!
	Paste the spectrum under investigation into the textbox below!
	70 3 71 3 72 16 73 999 74 87 75 78 76 4 77 5 78 0 79 0 80 0 81 1 82 6 83 13 84 4 85 3 86 4 87 5 88 4 89 52 90 4 91 2 92 0 93 0 94 0 95 0 96 0 97 2 98 1 99 4 100 12 101 16 102 9 103 116 104 11 105 26 106 2 107 1 108 0 109 0 110 0 111 1 112 1 113 4 114 11 115 7 116 5 117 93 118 9 119 8 120 0 121 0 122 0 123 0 124 0 125 0 126 1 127 3 128 3 129 101 130 19 131 25 132 4 133 60 134 8 135 4 136 0 137 0 138 0 139 0 140 1 141 1 142 4 143 13 144 2 145 6 146 1 147 276 148 44 149 27 150 3 151 1 152 0 153 0 154 0 155 0 156 1 157 70 158 12 159 5 160 148 161 26 162 7 163 8 164 1 165 0 166 0 167 0 168 1 169 2 170 1 171 0 172 3 173 4 174 1 175 4 176 0 177 4 178 0 179 0 180 0 181 0 182 0 183 0 184 0 185 0 186 2 187 1 188 0 189 28 190 7 191 13 192 2 193 1 194 0 195 0 196 0 197 0 198 0 199 0 200 0 201 5 202 1 203 3 204 23 205 162 206 31 207 16 208 2 209 0 210 2 211 0 212 0 213 0 214 1 215 2 216 8 217 88 218 18 219 8 220 1 221 6 222 1 223 0 224 0 225 0 226 0 227 0 228 0 229 23 230 6 231 11 232 3
	🛿 Advanced Query Parameters show
	submit
Last Updated 17/11/20	009 10:25:44 © 2009 Golm Metabolome Database - All rights reserved W3C XHTML 10 W3C 055

Annotation of user-submitted GC/MS spectra at gmd.mpimp-golm.mpg.de

S Functional Group Prediction Results hide 8 predicted functional groups							
<u>functional</u> group	image	prediction	<u>probability</u>	<u>adjusted</u> probability	<u>support</u>	description	contained in Idose
1 2 Diol	$\begin{array}{c} R_{1} & OH & OH \\ R_{2} & R_{3} \\ R_{3} = 11, alkyl, aryl \\ R_{4} = 11, alkyl, aryl \\ R_{3} = H, alkyl, aryl \\ R_{4} = H, alkyl, aryl \\ R_{4} = H, alkyl, aryl \\ \end{array}$	present V	100.00%	9.71%	651	intensity lq - 217 >= 2.3706843138 and intensity lq - 103 >= 2.5928983808 and intensity	true 💙
Hydroxy	R — OH R = alkyl, aryl	present V	100.00%	0.89%	779	intensity Iq 191 >= 1.4219502926 and intensity Iq 217 >= 2.3706843138 and intensity	true 💙
Alcohol	$R \longrightarrow OH$ R = H, alkyl, aryl	present V	99.98%	1.64%	515	intensity Iq 217 >= 2.3706843138 and intensity Iq 319 >= 0.5253005028	true 💙
Sec Alcohol	$R_1 = H$, all yl aryl	present	99.23%	4.98%	900	intensity lq - 217 >= 2.3706843138 and intensity lq - 103 >= 2.067753911 and intensity	true 💙

From Metabolites to Pathways

GC/MS Data Metabolomics databases: The Golm Metabolome Database (GMD) Automated GC/MS-spectra interpretation _ **Metabolites** Metabolite-transcript causal relationships from time course data Pathways Metabolomics-assisted genome annotation in Chlamydomonas reinhardtii

Genomes

Can we infer causal and, thus, pathway relationships from metabolomics data?

Which molecules function as **cause**, which as **effect**?

From Correlation Networks to Pathways

$$r = \frac{\sum_{i=1}^{n} (X_i - \overline{X}) (Y_i - \overline{Y})}{(n-1)S_X S_Y}$$

X,Y.... gene expression level, metabolite level etc.

X,Y are connected (edge) if $r>r_c$

Is there a straightforward connection between the underlying system and the observed correlations?

Can we deduce novel pathways based on the observed correlation matrix?

Yeast Transcripts & Metabolite Profiles in Response to Temperature Stress: Time series data

Metabolite Profiles

GC/MS with in vivo stable isotope labeling for accurated quantification

Heat Stress

- 42 metabolites
- 11 unknowns

Cold Stress

- 44 metabolites
- 13 unknowns

Transcript Profiles

Affymetrix whole yeast genome microarray

Katrin Straßburg, Joachim Kopka

Deducing pathways from time-course data?

Omics-viewer from YeastCyc

Patrick May

Metabolite correlations are more informative than transcript correlations

Katrin Straßburg, Joachim Kopka

Causal relationships via time-delayed correlations

Causal relationships using the concept of Granger causality

$$\begin{split} T(t) &= \sum_{i=1}^{d} A_{T,i} T(t-i) + \sum_{i=1}^{d} A_{MT,i} M(t-i) + E_{T}(t) \\ M(t) &= \sum_{i=1}^{d} A_{M,i} T(t-i) + \sum_{i=1}^{d} A_{M,i} M(t-i) + E_{M}(t) \end{split}$$

- T variable 1 (transcript)
- M variable 2 (metabolite)
- A parameters
- E residual error

Causal relationships using the concept of Granger causality

$$\begin{split} T(t) &= \sum_{i=1}^{d} A_{T,i} T(t-i) + \sum_{i=1}^{d} A_{MT,i} M(t-i) + E_{T}(t) \\ M(t) &= \sum_{i=1}^{d} A_{M,i} T(t-i) + \sum_{i=1}^{d} A_{M,i} M(t-i) + E_{M}(t) \end{split}$$

- T variable 1 (transcript)
- M variable 2 (metabolite)
- A parameters
- E residual error

Katrin Straßburg, Joachim Kopka

Causal relationships using the concept of Granger causality

Cause		Effect	n-value	BH-corrected
	-	Encet	pvalue	p-value
Heat				
Phenylalanine	->	YPR047W, 1773228_at	3.38E-04	7.88E-02
Adenosine-5-monophosphate	->	YBR115C, 1775044_at	1.46E-03	1.71E-01
Serine	->	YGL026C, 1779478_at	2.37E-03	1.84E-01
YJR109C, 1777097_at	->	Glutamic	3.41E-03	1.99E-01
Cold				
YKL106W, 1776650_at	->	Phenylalanine	1.99E-03	1.51E-01
Fumaric	->	YKL148C, 1772202_at	2.42E-03	1.51E-01
YER073W, 1771943_at	->	Glyceric	2.75E-03	1.51E-01
YBR299W, 1774491_s_at	->	Fructose	3.23E-03	1.51E-01
Arginine	->	YDR341C, 1773272_at	3.38E-03	1.51E-01
YFL022C, 1779336_at	->	Phenylalanine	3.95E-03	1.51E-01

<u>Multiple Testing Correction problem:</u> ~450 tests (metabolites-cognate transcript) <u>Solution:</u> Take only direction of greater significance (cuts number of tests in half)

Cause/Effect Metabolites: Examples

Serine= Cause metabolite

Phenylalanine= Effect metabolite

Walther, Strassburg, Kopka, submitted

Identification of central Cause-Metabolites

Glutamic acid and
serine
identified as
central cause
metabolites

Matchalita	in Course	in Effect	n volus	BH corrected
Wietabolite	is Cause	IS Effect	p-value	p-value
Glutamic acid	59	19	4.19E-06	1.30E-04
Serine	23	3	4.92E-05	7.63E-04
Fructose-6-phosphate	10	1	6.35E-03	5.12E-02
Adenosine-5-monophosphate	18	5	0.61E-03	5.12E-02
Threonine	10	2	2.25E-02	1.39E-01
Glucose-6-phosphate	8	2	6.54E-02	3.38E-01
Glucose	16	8	1.08E-01	3.87E-01
Aspartic acid	17	9	1.22E-01	3.87E-01
Lysine	5	1	1.25E-01	3.87E-01
Valine	5	1	1.25E-01	3.87E-01
Proline	6	2	1.80E-01	4.28E-01
Isoleucine	6	2	1.80E-01	4.28E-01
Leucine	6	2	1.80E-01	4.28E-01
Alanine	7	3	2.27E-01	5.02E-01
Phenylalanine	5	9	2.50E-01	5.17E-01
Glyceric acid-3-phosphate	2	0	3.02E-01	5.85E-01
Glutamine	9	6	4.53E-01	6.71E-01
Citric acid	2	4	4.53E-01	6.71E-01
Glyceric acid	4	2	4.53E-01	6.71E-01
Glycerol	2	4	4.53E-01	6.71E-01
Homoserine	4	2	4.54E-01	6.71E-01
Trehalose	5	3	5.08E-01	7.09E-01
Asparagine	4	6	5.49E-01	7.09E-01
Malic acid	6	4	5.49E-01	7.09E-01
Fumaric acid	11	13	6.88E-01	7.92E-01
Ribose-5-phosphate	11	13	6.90E-01	7.92E-01
Tyrosine	2	3	6.90E-01	7.92E-01
Glycine	7	7	1.00E+00	1.00E+00

is Cause is Effect

From Metabolites and Pathways to Genomes

GC/MS Data

- Metabolomics databases: The Golm Metabolome Database (GMD)
- Automated GC/MS-spectra interpretation

Metabolites

 Metabolite-transcript causal relationships from time course data

Pathways

- Metabolomics-assisted genome annotation in *Chlamydomonas reinhardtii*

Genomes

Metabolomics & Proteomics-assisted genome annotation in Chlamydomonas reinhardtii

159 metabolites

- 3,483 proteins identified by MS
- proteins with no peptide support

MapMan view of Central Metabolism

May et al. Genetics 2008

- in medium
- detected by GC/MS

- in medium
- detected by GC/MS
- from KEGG
 - : annotated in genome

- in medium
- detected by GC/MS
- from KEGG
 - : annotated in genome

- in medium
- detected by GC/MS
- from KEGG
 - : annotated in genome
 - □ : inferred from KEGG

- in medium
- detected by GC/MS
- from KEGG
 - : annotation
 - □ : inferred from KEGG
 - : presence predicted =

minimal expansion

Omics-assisted metabolic pathway analysis in Chlamydomonas reinhardtii

Building a Chlamydomonas draft network from KEGG

- using reciprocal best hit analysis of JGI 3.1 against KEGG
- 3365 nc, cp, mt proteins mapped on
 - 198 KEGG pathways (JGI: 114)
 - 7330 KEGG reactions
 - 713 EC classifications (JGI: 552)
- network expansion used to determine which of the 159 metabolites are producible by the draft network
 - 127 metabolites are represented in KEGG
 - 70 are in the *scope*
 - 57 are **NOT** in the *scope*

- Sucrose detected in Chlamydomonas
- Sucrose pahtway genes including SPS (Sucrose Phosphate Synthase) must be encoded in the genome, but were not annotated in the draft genome
- Bioinformatic analysis of the Chlamydomonas genome identified candidate SPS gene

Arabidopsis SPS sequence

Summary

Acknowledgements

AG Walther (MPIMP) Jan Hummel

Patrick May Pawel Durek

AG Kopka (MPIMP)

Katrin Straßburg Nadine Strehmel Joachim Kopka

AG Usadel/Stitt (MPIMP) Björn Usadel

AG Selbig (MPIMP, U Potsdam)

Joachim Selbig Zoran Nikoloski

AG Weckwerth (GoFORSYS)

Stefanie Wienkoop Stefan Kempa Julia Weiss Luis Recuenco-Munoz Wolfram Weckwerth (now U Vienna)

AG Ebenhöh (GoFORSYS)

Nils Christian Oliver Ebenhöh (now U Aberdeeen)