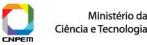


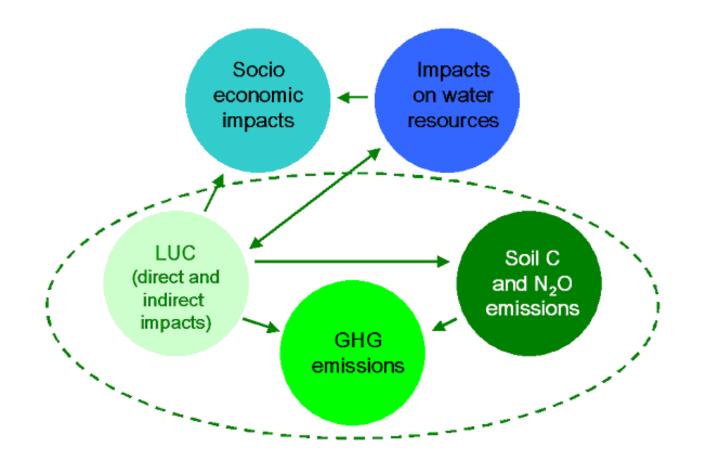
Sustainability of biofuels: GHG emissions

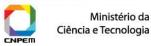
Joaquim E. A. Seabra

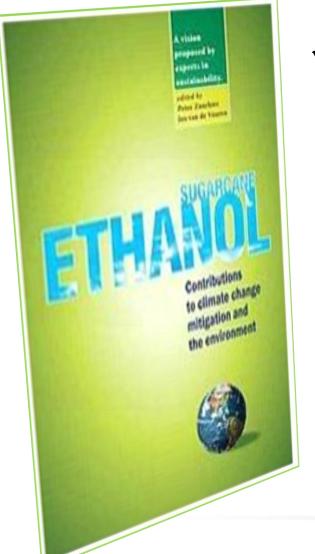
joaquim.seabra@bioetanol.org.br

Scientific Issues on Biofuels - Fapesp May 25th, 2010


- ✓ Worldwide, the main driving-forces for biofuels are:
 - Improving energy security, that includes diversification of the energy matrix, use of other energy sources than oil, development of indigenous energy sources;
 - Mitigation of GHG emissions and climate change impacts;
 - Improvement of life conditions of farmers and agricultors;
 - Supply of energy services;
 - Mitigation of other environmental (potential) impacts.



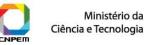

- Sustainability of biofuels has been one of the focus points of the debate concerned to biofuels.
- Scientific arguments (sometimes not based on scientific evidences) have impacted both the society's behavior and policy makers.
- ✓ It is absolutely necessary to have science-based arguments; without them it is not possible to answer the "critics".
- \checkmark In the mid- to long-term, the future of the biofuels will depend on their effective sustainability (both in the external and in the domestic markets).


CTBE: Sustainability RP

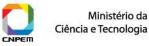
Sugarcane ethanol: Energy balance and GHG emissions

✓ Macedo and Seabra (2008):

- 2006: 44 mills (~100 Mtc/year) of Brazilian C-S Region – data from CTC Mutual Control.
- 2020 Electricity Scenario: trash recovery (40%) and surplus power production with integrated commercial, steam based cycle (CEST system).
- 2020 Ethanol Scenario: trash recovery and ethanol production from biochemical conversion of surplus biomass in a hypothetical system integrated to the mill.



- Sugarcane production and processing, and ethanol distribution:
 - Carbon fluxes due to:
 - Fossil fuel utilization in agriculture, industry and ethanol distribution;
 - All process inputs;
 - Equipment and buildings production and maintenance.
 - GHG fluxes not related with the use of fossil fuels:
 - N₂O and methane: trash burning, N₂O soil emissions from N-fertilizer and residues (including stillage, filter cake, trash). CO2 from limestone.
 - GHG emissions due to land use change.
- ✓ GHG emissions mitigation: ethanol and surplus electricity substitution for gasoline or conventional electricity.



Energy flows in ethanol production (MJ/t cane)

	2006	2020 electricity	2020 ethanol
Energy input	235	262	268
Agriculture	211	238	238
Cane production	109	142	143
Fertilizers	65	51	50
Transportation	37	45	45
Industry	24	24	31
Inputs	19	20	25
Equip./buildings	5	4	6
Energy output	2,198	3,171	3,248
Ethanol ^a	1,926	2,060	2,880
Electricity surplus ^b	96	1,111	368
Bagasse surplus ^a	176	0.0	0.0
Energy ratio	9.4	12.1	12.1

^a Based on LHV (Low Heating Value).

 $^{\rm b}$ Considering the substitution of biomass-electricity for natural gas-electricity, generated with 40%(2006) and 50% (2020) efficiencies (LHV).

Life cycle GHG emissions (kg CO₂eq/m³ anhydrous)

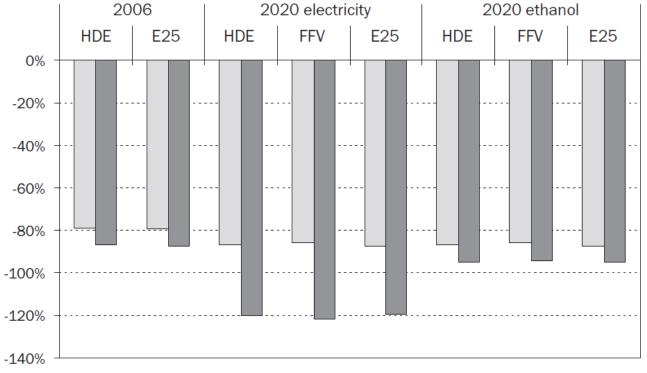
	2006	2020 Electricity	2020 Ethanol
Cane production	417	326	232
Farming	97	117	91
Agr. inputs	57	43	23
Transportation	32	37	26
Trash burning	84	0	0
Soil emissions	146	129	92
Ethanol production	25	24	22
Chemicals	21	20	19
Equip. and buildings	4	4	3
Ethanol distribution	51	43	43
Credits			
Electricity surplus ^b	-74	-803	-190
Bagasse surplus ^c	-150	0	0

269

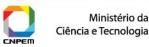
a. Emissions for hydrous ethanol/m3 are about 5% less than values verified for anhydrous ethanol.

b. Considering the substitution of biomass-electricity for natural gas-electricity, generated with 40% (2006) and 50% (2020) efficiencies (LHV).

-409

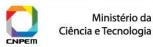

 C. Considering the substitution of biomass fuelled boilers (efficiency = 79%; LHV) for oil fuelled boilers (efficiency = 92%; LHV). Ministério da

107



GHG emissions mitigation with respect to gasoline

□ Allocation ■ Co-products credits



Net avoided emissions by sugarcane products

Scenario	Ethanol use	Net emissions			
		$t CO_2 eq/ha.y \leftrightarrow$	kg CO ₂ eq/tc	$\leftrightarrow t \operatorname{CO}_2 eq/m^3$	
2005/2006	HDE	-11,3	-155	-1,7	
	E25	-11,5	-159	-1,8	
2020 – Electricity	HDE	-18,1	-229	-2,4	
	FFV	-16,8	-212	-2,2	
	E25	-18,4	-233	-2,5	
2020 – Ethanol	HDE	-20,0	-253	-1,9	
	FFV	-18,2	-229	-1,7	
	E25	-20,5	-258	-2,0	

Source: Seabra (2008)

Direct effects of land use change

Reference crop	Carbon stock	Emissions (kg CO ₂ eq./m ³)			
	change ^a (t C/ha)	2006	2020 electricity	2020 ethanol	
Degraded pasturelands	10	-302	-259	-185	
Natural pasturelands	-5	157	134	96	
Cultivated pasturelands	-1	29	25	18	
Soybean cropland	-2	61	52	37	
Maize cropland	11	-317	-272	-195	
Cotton cropland	13	-384	-329	-236	
Cerrado	-21	601	515	369	
Campo Limpo	-29	859	737	527	
Cerradão	-36	1.040	891	638	
LUC emissions ^b		-118	-109	-78	

^a Based on measured values for below and above ground (only for perennials) carbon stocks.

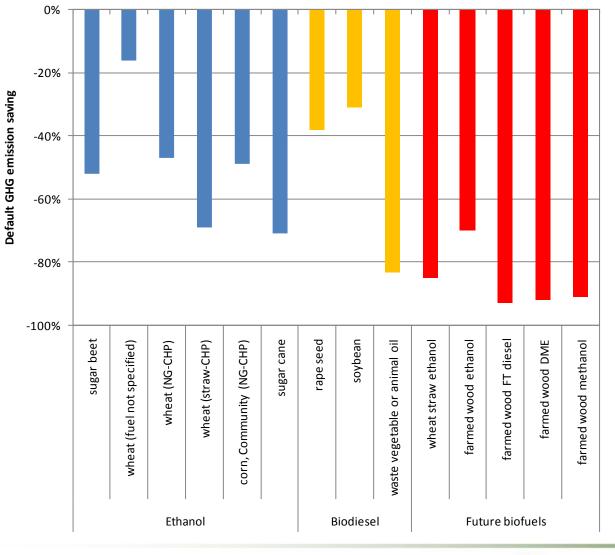
^b Considering the following LUC distribution – 2006: 50% pasturelands (70% degraded pasturelands; 30% natural pasturelands), 50% croplands (65% soybean croplands; 35% other croplands); 2020: 60% pasturelands (70% degraded pasturelands; 30% natural pasturelands); 40% croplands (65% soybean croplands; 35% other croplands). Cerrados were always less than 1%.

Expansion includes only a very small fraction of lands with high soil carbon stocks, and some degraded pasturelands, leading to increased carbon stocks.

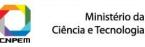
INDIRECT effects of land use change

In the Brazilian context, most scenarios (based on Internal Demand plus some hypotheses for exports) indicate a total of ~ 60 M m³ ethanol in 2020, or 36 M m³ more than in 2008. Such expansion corresponds to a relatively small requirement for new cane areas (~5 M ha), which must be considered combined with probable release of areas due to the progressive increase of pasture productivities. Within Brazilian soil and climate limitations, the strict application of the environmental legislation for the new units, and the relatively small areas needed, the expansion of sugarcane until 2020 is not expected to contribute to ILUC GHG emissions.

International analyses

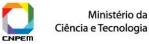

Sugar cane ethanol	Default GHG emissions (g CO2eq/MJ)
Cultivation (e _{ec})	14
Processing $(e_p - e_{ee})$	1
Transport and distribution (e_{td})	9
Total	24
Default GHG emission saving	71%

EU Directive



EU Directive

- \checkmark "Biofuels should be promoted in a manner that encourages greater agricultural productivity and the use of degraded land."
- ✓ "The Commission should develop a concrete methodology to minimise greenhouse gas emissions caused by indirect land-use changes."
- $\checkmark e_1 = (CS_R CS_A) \times 3,664 \times 1/20 \times 1/P e_R$
 - The bonus of 29 gCO2eq/MJ shall be attributed if evidence is provided that the land:
 - (a) was not in use for agriculture or any other activity in January 2008; and
 - (b) falls into one of the following categories:
 - (i) severely degraded land, including such land that was formerly in agricultural use;
 - (ii) heavily contaminated land.



Carbon intensity (kg CO₂/t ethanol)

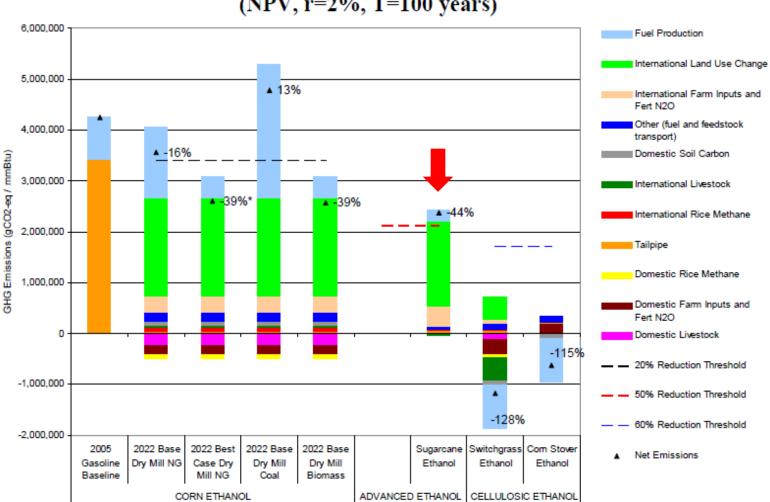
Module	Sugar cane Brazil	Sugar beet UK	Corn USA	Corn France
Crop production	348	530	913	999
Drying and storage	-	-	55	19
Feedstock transport	49	176	33	30
Conversion	0	645	1752	263
Liquid fuel transport and storage	93	0	27	8
Liquid fuel transport and storage	175	0	122	-
TOTAL	665	1351	2902	1319

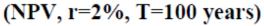
Table B. GHG Emissions Summary for Sugar Cane Ethanol

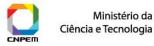
Sugar Cane Ethanol Components	GHGs (g CO ₂ e/MJ)	% Emission Contribution
Sugar Cane Farming (incl. straw burning)	9.9	37.2%
Ag Chemicals		
Production and Use Impacts	8.7	32.7%
Sugar Cane	2.0	7.5%
Transportation	2.0	7.570
Ethanol Production	1.9	7.1%
Ethanol T&D	4.1	15.4%
Total Well-to-Tank	26.6	100%
Total Tank-to- wheel	0	0%
Total Well-to-Wheel	26.60	100%
Inclusive of		
Tailpipe Emissions	73.40*	LUC: 46 g CO2 e
and Land Use		
Change		

CNPEM

Pathway Description	WTW GHG* Emissions (gCO ₂ e/MJ)
Baseline Pathway	
Brazilian sugarcane using average production	27.40
processes	
Scenario 1	
Brazilian sugarcane with average production process,	12.20
mechanized harvesting and electricity co-product credit	
Scenario 2	
Brazilian sugarcane with average production process	20.40
and electricity co-product credit	
*These values do not include contributions from Land Use Change.	•


report titled "Proposed Regulation to Implement the Low Carbon Fuel Standard - Initial Statemer Reasons (ISOR)" from the website: www.arb.ca.gov/fuels/lcfs/lcfs.htm.





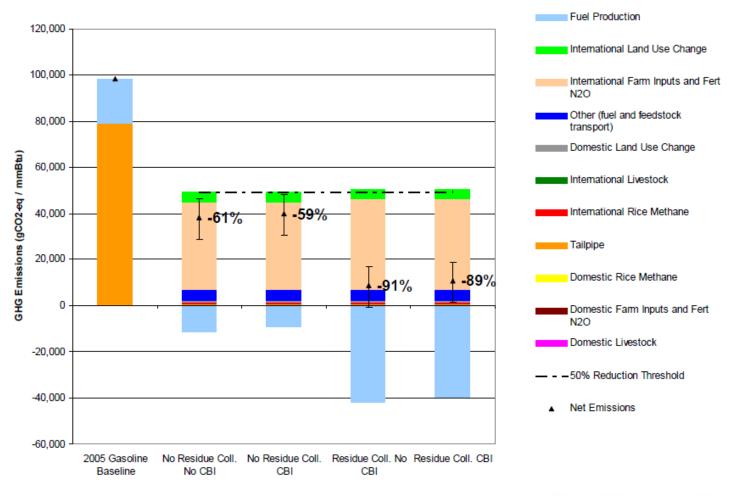
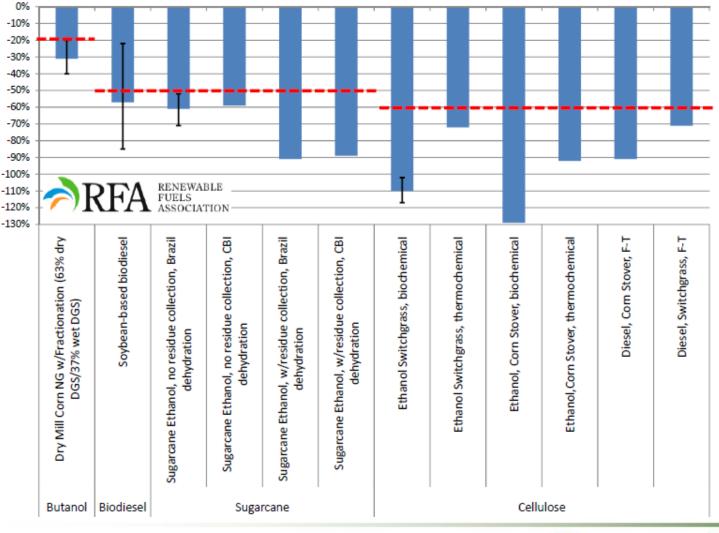
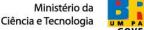
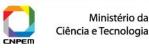


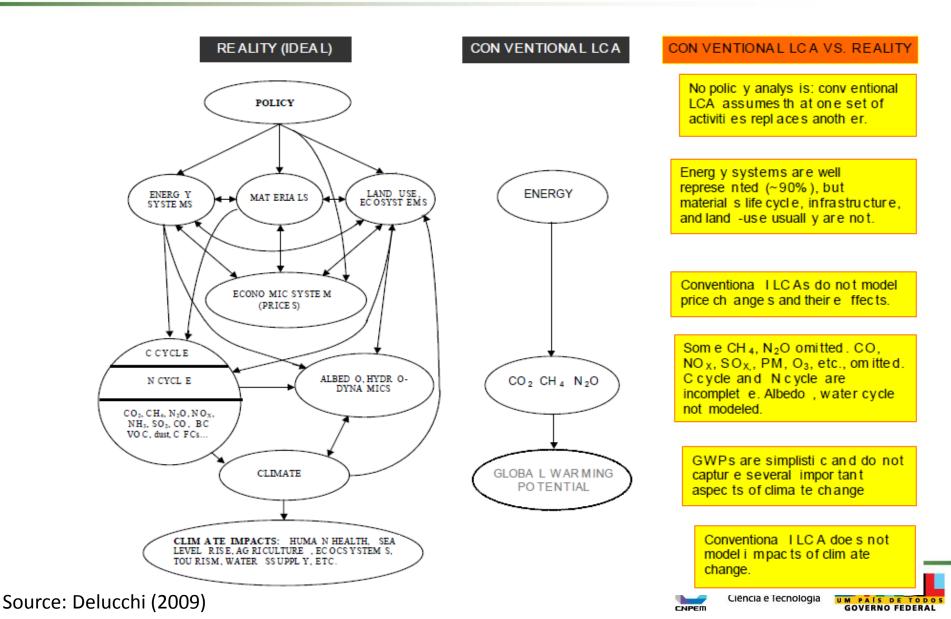
Figure 2.6-10. Results for Sugarcane Ethanol by Lifecycle Stage With and without residue collection and CBI





RFS2 Final Rule: Butanol, Advanced, and Cellulosic Biofuels GHG Reductions




Critical aspects

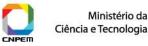
- \checkmark Database quality;
- \checkmark Scope of the analysis;
- ✓ Co-products:
 - Allocation (mass, energy, market value, other);
 - Substitution.
- \checkmark LUC and ILUC;
- ✓ Biorefineries.

LCA models / approach

Atmos. Chem. Phys., 8, 389-395, 2008 www.atmos-chem-phys.net/8/389/2008/ © Author(s) 2008. This work is distributed under the Creative Commons Attribution 3.0 License.

Atmospheric Chemistry and Physics

N₂O release from agro-biofuel production negates global warming reduction by replacing fossil fuels


P. J. Crutzen^{1,2,3}, A. R. Mosier⁴, K. A. Smith⁵, and W. Winiwarter^{3,6}

¹Max Planck Institute for Chemistry, Department of Atmospheric Chemistry, Mainz, Germany ²Scripps Institution of Oceanography, University of California, La Jolla, USA ³International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria ⁴Mount Pleasant, SC, USA ⁵School of Geosciences, University of Edinburgh, Edinburgh, UK ⁶Austrian Research Centers - ARC, Vienna, Austria

Received: 28 June 2007 - Published in Atmos. Chem. Phys. Discuss .: 1 August 2007 Revised: 20 December 2007 - Accepted: 20 December 2007 - Published: 29 January 2008

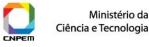
Abstract. The relationship, on a global basis, between the amount of N fixed by chemical, biological or atmospheric processes entering the terrestrial biosphere, and the total emission of nitrous oxide (N₂O), has been re-examined, us-

into account the use of fossil fuel on the farms and for fertilizer and pesticide production, but it also neglects the production of useful co-products. Both factors partially compensate each other. This needs to be analyzed in a full life cycle as-

Allen et al. (2010)

Table 4

Cumulative annual N₂O-N emission and emission factor (mean ± S.E.) estimated for November 2003–2004 period in 3rd and 4th ration sugarcane crop, subtropical Queensland, Australia.

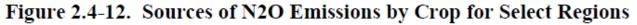

	0N	50 + 50N	100N	100+100N	200N
Cumulative annual N ₂ O-N emission $(kgN_2O-Nha^{-1}year^{-1})$ Emission factor	$2.86\!\pm\!0.34$	$\begin{array}{c} 3.86 \pm 0.65 \\ 1.00 \pm 0.64 \end{array}$	$\begin{array}{c} 3.93 \pm 0.23 \\ 1.07 \pm 0.25 \end{array}$	$\begin{array}{c} 5.81 \pm 1.88 \\ 2.95 \pm 0.17 \end{array}$	$\begin{array}{c} 9.56 \pm 1.33 \\ 6.70 \pm 0.63 \end{array}$

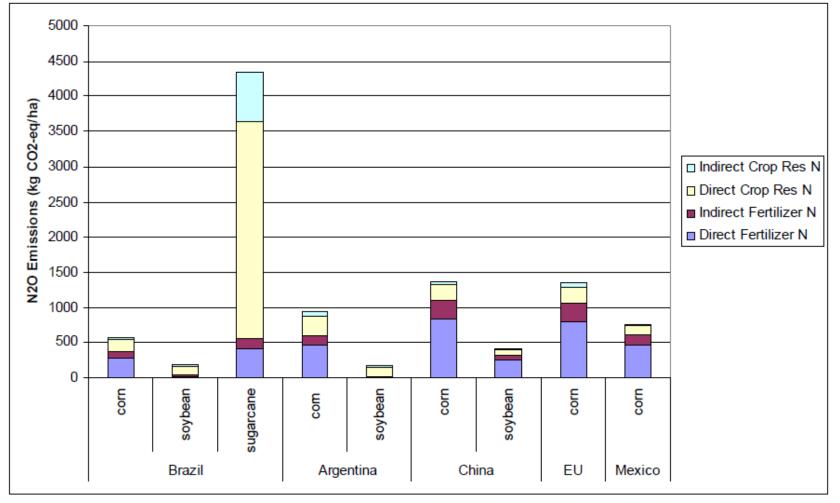
Denmead et al. (2009)

Table 1

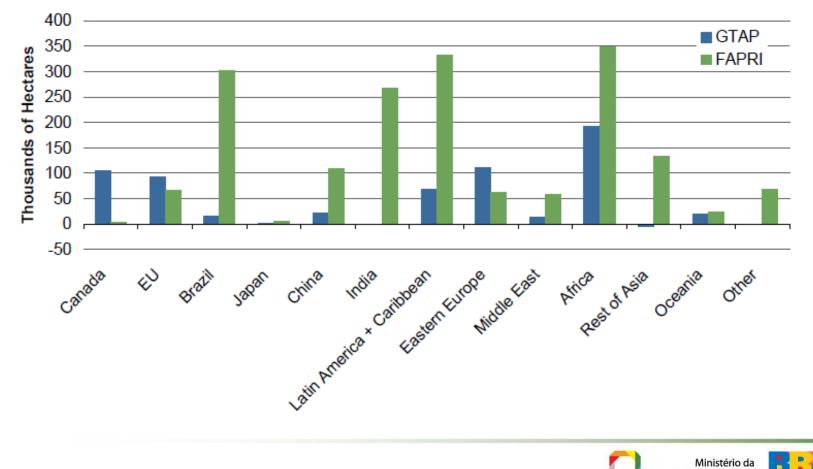
Emission factors for N₂O for various Australian cropping systems.

Сгор	Emission factor (%)	Reference
Non-irrigated crops	0.3	Galbally et al. (2005)
Pasture	0.4	Galbally et al. (2005)
Cotton	0.5	Galbally et al. (2005)
Sugarcane	1.25	NGGI (2007)
Sugarcane	2.8	This paper
Sugarcane on ASS	21	This paper
Horticulture and vegetables	2.1	Galbally et al. (2005)
Irrigated crops	2.1	Galbally et al. (2005)


Fator de emissão de N ₂ O obtido de estudos feitos pela equipe da Embrapa Agrobiologia em solos	Uso do solo	Ciclo de avaliação ¹ (dias)	N-Fertilizante (fonte kg N ha ⁻¹)	Tipo de solo	FE baseado em área de referência (%)
agrícolas	Londrina, PR Milho SP rotação (ano 1 e 2) Milho PD rotação (ano 1 e 2)	136/141 136/141	Uréia – 80 Uréia – 80	Latossolo Vermelho distroférrico	0,05/0,04 0,09/0,03
Fator de emissão direta Dados medidos no Brasil Média geral 0,30 % (0,20 – 0,47%)	Passo Fundo, RS Trigo PD rotação Soja/trigo PD (ano 1 e 2) Soja/trigo PC (ano 1 e 2) Milho/trigo PD Milho/trigo PD Sorgo/trigo PD Sorgo/trigo PC	137 1 ano 1 ano 1 ano 1 ano 1 ano 1 ano 1 ano 1 ano	Uréia – 40 Fert+Res – 120/116 Fert+Res – 126/133 Fert+Res – 162 Fert+Res – 141 Fert+Res – 193 Fert+Res – 193	Latossolo Vermelho escuro	0,13 0,56/0,81 0,47/0,52 0,41 0,70 0,24 0,29
Fator de emissão direta IPCC 1% (0,3 – 3%)	Santo Antônio de Goiás, GO Milho PD sucessão Arroz sequeiro PD (ano 1 e 2) Feijão irrigado PD Seropédica, RJ Milho SP Milho SP Milho SP Capim elefante Capim elefante Capim elefante Capim elefante	140 133/132 149 120 120 120 180 180 180 180 180	Uréia – 80 Uréia – 90 Uréia – 80 Uréia – 100 Uréia – 150 Uréia – 40 Uréia – 80 Uréia – 120 Uréia – 160	Latossolo Vermelho Escuro Argissolo Vermelho Amarelo	0,22 0,13/0,14 0,12 0,16 0,35 0,33 0,18 0,22 0,22 0,22 0,37



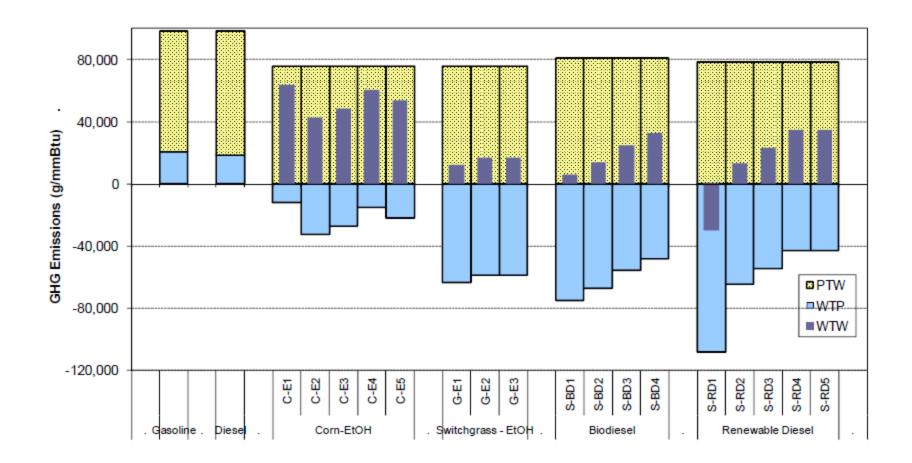
Source: EPA (2010)

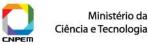

Tools for ILUC analysis (?)

Ciência e Tecnologia

GOVERNO FEDERAL

CNPEIL


Change in International Crop Acres from 2.6 Billion More Gallons of Corn Ethanol



Source: Babcock (2009)

Influence of co-products

Source: Wang et al. (2009)

$\textbf{INTEGRAÇÃO BIOETANOL} \leftrightarrow \textbf{BIODIESEL}$

Planta de Biodiesel integrada à Usina Barralcool

Usina Barralcool

Thank you

joaquim.seabra@bioetanol.org.br

N - Ye.