The phylogeography-phylogenetics continuum

Scott V. Edwards Department of Organismic and Evolutionary Biology Harvard University Cambridge, MA USA http://www.oeb.harvard.edu/faculty/edwards

The phylogeographyphylogenetics continuum

Multilocus phylogeography across
 the Carpentarian barrier

• **Species trees**: just another phylogeographic model

• How **natural selection** can create novel patterns in gene trees

Concordance of geographic ranges of Australian songbirds

Carpentarian barrier (B) is deepest split in area cladograms

Australia expeditions, 1987 - 2005

Those welcoming Aussies...

Case studies

Grassfinches (*Poephila*) W. Bryan Jennings

Red-backed Wren (*Malurus melanocephalus*) June Lee

Treecreepers (*Climacteris*) Nancy Rotzel Zebra Finches (*Taenopygia gut* Chris Balakrishnan

Anonymous loci: advantages over microsatell

- Mutational scale directly comparable to mtDNA
- Mutational homoplasy is minimal
- Gene trees easily constructed
- Diversities easily compared across species

Obtaining anonymous loci

Pipeline for multilocus data analysis

East-west pairs -- grassfinches (Poephila) P. cincta

P. acuticauda

P. <u>h</u>ecki

30 gene trees from Australian finches

Jennings & Edwards (2005) Evolution 59, 2033-2047.

Species tree of Poephila grassfinches

Red-backed Fairy wren - discordant subspecies boundaries

Population Assignment - Structure

-22842.8 -22847.2	805.2 813.6		
-22847.2	813.6		
	191,919		
-22844.8	809.7		
-22062.8	2148.2		
-22077.3	2176.7		
-22060.1	2135.9		
-28951.7	14967.9		
-26786.3	10266.9		
-32129.0	22148.8	Fastern	
Kimberley		forests	Ca
	-22062.8 -22077.3 -22060.1 -28951.7 -26786.3 -32129.0	-22062.8 2148.2 -22062.8 2176.7 -22060.1 2135.9 -28951.7 14967.9 -26786.3 10266.9 -32129.0 22148.8	-22062.8 2148.2 -22077.3 2176.7 -22060.1 2135.9 -28951.7 14967.9 -26786.3 10266.9 -32129.0 22148.8 Kimberley Eastern forests

4

Treecreepers (*Climacteris*) Black-tailed treecreeper Brown treecreeper

____ <u>``_</u>__

Treecreeper populations are connected but variable in size (MIGRATE)

Rotzel, Edwards and Beerli, unpubl. data

Test of contemporaneous divergence across Carpentarian barrier using msBayes

Regions of fixed differences between primate species

rilla buman

Hobolth et al. (2007) PLoS Genetics

Alternative models of population history

Population size: $\theta = 4N\mu$ Divergence time: $\tau = \mu t$ Gene flow: M=m/ μ

equilibrium migration model MIGRATE: Beerli 2006 *Bioinformatics*

isolation-migration model <u>IM: Hey</u> and Nielsen 2004 *Genetics*

BEST: Liu and Pearl, Syst. Biol. In press

Justifications for species trees

- Current paradigm: gene trees & concatenation
 Philosophical justification: what are we estimating and how do we combine data in systematics?
- Improved model: better describes patterns in sequence data and the relationship between gene and species trees
- **Performance**: outperforms concatenation in some areas of tree space and gives more accurate confidence than does concatenation

Deep coalescence vs. branch length heterogeneity

Deep coalescence

Branch length heterogeneity

Edwards 2009. *Evolution* 63:1-19

Species tree approaches span all major statistical methods

Bayesian	
BEST	Liu & Pearl. 2007. <i>Syst. Biol</i> . 56: 504-514
BEAST*	Heled & Drummond. 2010. Mol. Biol. Evol. 27: 570-580.

Maximum Likelihood

MP-EST Liu, et al. 2010. *BMC Evol. Biol*. (in press)

Mixed methods

STAR/STEAC Liu, et al. 2009. *Syst. Biol.* 58: 468-477

Parsimony

Deep coalescence Maddison & Knowles. 2006. Syst. Biol. 55: 21-30.

Summary statistics

Maximum Tree Liu, Yu and Pearl. 2009. J Math Biol. 60:95-106.

The multispecies coalescent

Degnan & Rosenberg (2009) TREE 24: 332-340

A tale of two likelihoods

Liu, Yu, Kubatko, Pearl and Edwards 2009. Mol. Phyl. Evol. 53:320-328

Likelihood of gene trees given a species tree

(c)

Liu, Yu, Kubatko, Pearl and Edwards 2009. Mol. Phyl. Evol. 53: 320-328

<u>Species Trees from Average Ranks</u> of Coalescence Times (STAR)

Liu, Yu, Pearl, Edwards (2009) Syst. Biol. 58: 468-477

topology of the STAR tree

Liu, Yu, Kubatko, Pearl and Edwards 2009. Mol. Phyl. Evol. 53:320-328

Maximum (pseudo) likelihood method for species trees

Liu, Li & Edwards. 2010. BMC Evol. Biol. (in press)

Is the coalescent model a better fit to the data than concatenation?

Liu & Pearl, D. K. (2007) *Syst. Biol.* 56, 504-14; Edwards, Liu and Pearl. 2007. *PNAS* 104:5936 Jennings, W. B. & Edwards, S. V. (2005) *Evolution* 59, 2033-2047; Rokas et al. 2003. *Nature* 425: 798-804.

Phylogenetic analysis in the anomaly zone

Australo-Papuan Fairy Wrens - Maluridae

Splendid Fairywren (Malurus)

Superb Fairywren (Malurus)

Southern Emu-wren (Stipiturus)

Broad sampling within Fairy Wrens

No	Species Name	Common Name	Depository	Specimen No.	State
1	Amytornis ballarae	Kalkadoon Grasswren	ANWC	41740	~~)
2	Amytornis barbatus	Grey Grasswren	ANWC	41789	
3	Amytornis dorotheae	Carpentarian Grasswren	ANWC		
4	Amytornis goyderi	Eyrean Grasswren	ANWC		
5	Amytornis housei	Black Grasswren		-	
6	Amytornis merrotsyi	Short-tailed Grasswren			1
7	Amytornis purnelli	Dusky Grow		Allans	
8	Amytornis textiles	Thick	Vib .	100.	
9	Amytornis striatus		Inur		
10	Clytomias insignis	h	11-		
11	Malurus amo				
12	M				
13		ACIES			WA
			•		SA
			$\sim C \lambda$	12171	PNG
			JU.	7564	PNG
			KU	7082	PNG
			ANWC	20947	QLD
\		wren	ANWC	29906	QLD
		andid Fairy wren	ANWC	28009	QLD
2		Variegated Fairy wren	ANWC	31655	NSW
22		Purple-crowned Fairy wren	BMNHC	60807	NT
23	achurus	Southern Emu-wren	ANWC	20748	SA
24	piturus mallee	Mallee Emu-wren	ANWC	40418	SA
25	Stipiturus ruficeps	Rufous-crowned Emu-wren	ANWC	39914	QLD
26	Greygone olivacea	White-throated Greygone	MCZ	336023	NSW

Heterogeneity in Fairy Wren Gene Trees Across Loci

Tree Set Visualization (by multidimensional scaling): Hillis et al 2005. *Syst. Biol.* 54:471-482. **Concaterpillar**: Leigh, J. W., et al.. 2008. *Syst. Biol.* 57: 104-115.

Exploring Incomplete Lineage sorting Through Species Tree Methods

A Species Tree For Fairy Wrens (BEST Method)

Fairy Wren Species Trees: High Consistency among Methods

Incomplete lineage sorting is common in fairy wrens

Posterior probabilities under concatenation are uniformly higher than under species tree analysis

Phylogenetic Manifestations of Neutrality and Selection

Positive Selection

Neutral Evolution

Edwards 2009 PNAS 106:8799-8800

incomplete lineage sorting is Common In Fairy Wrens

Extraordinary Sperm Production In Fairy Wrens

	Domestic chicken	Guinea fowl	White-winged fairy-wren
Body mass (g)	2300	1850	7.6
Sperm/day ($\times 10^6$)	2000	70	646 (164-1974)
Sperm/h ($\times 10^6$)	83.3	3.0	26.9 (6.8-82.3)
Sperm/day/g of body	0.87	0.04	85.0 (19.5-259.7)
mass (×10°)			
Source	de Reviers & Williams 1981	Brillard & de Reviers 1981	Tuttle et al. 1996

Massively Parallel Sequencing Of testis Transcripts in Breeding And NonBreeding Seasons

Water-oil Emulsion

Capture Bead

Amplification

454 Sequencing (Raw Data)

Higher Diversity of Contigs In Breeding vs. Non-Breeding Season Testis

20 Reproductive Genes surveyed

Contig	Gene Name	Function	Coverage
722	Kazal-type Serine Proteinase Inhibitor	Protection of viable spermatozoa from the proteinase	125.583
5992	Beta Defensis (6e-05)	Microbicidal peptides active many bacteria, fungi, viruses	97.053
1948	Proacrosin	Mediating binding between acrosomal membrane and IPVL	91.025
1175	Tubulin Polymerization Promoting Protein	Promoting tubulin assemblies and cell proliferation	86.585
10816	Outer Dense Fiber Protein	Consists of sperm tail	64.102
5083			60.349
7574	Chromosome 10 Open Reading Frame 122		59.409
7761	Heat Shock Protein 40kd		42.143
5235	Creatine Kinase B-Variant	Catalyses the conversion of creatine	34.376
2098	Family with Sequence Similarity 46 Member D	Cancer/Testis Antigens	32.419
1895	Chromosome 20 Open Reading Frame 85		30.557
6856	Ribonuclease / angiogenin Inhibitor 1	Rnase Inhibitor	29.209
2639	Cytochrome c Oxidase Subunit Vic		24.909
5768			19.38
6676	Myeloid Leukemia Factor 1		18.959
17202			13.465
13352			9.971
5085			9.316
7629			6.759
16688			6.496

Red=genes showing d_n/d_s ratio > 1

Phylogenetic survey of reproductive genes across Fairy wren species

Directional Selection reduces incomplete lineage sorting In Reproductive Genes

Examples of genes showing Reciprocal monophyly among Fairy Wren species

Conclusions

- Multilocus phylogeography captures major breaks within species
- Species trees can be thought of as an extension of phylogeography
- New methods incorporate various aspects of coalescent process into phylogenetics
- Natural selection can speed up rate of monophyly

Thanks to

- Bryan Jennings, June Lee, Nancy Rotzel
- Liang Liu, Santiago Castillo, Dennis Pearl, June Lee, Leo Joseph
- National Science Foundation

Ascertainment bias and sampling strategy for SNPs

Microsatellites

SNPs

* Locus chosen for phylogeographic survey

Brumfield R. et al. 2003 TREE 18, 249-256.