
The Aptamer Technology: Promises of Synthetic and Robotic Biology

Henning Ulrich

Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil

Synthetic Biology

Substitute bioactive natural compounds (enzymes, receptor ligands by synthetic ones

The final goal is to be able to design biological systems in the same way engineers design electronic or mechanical systems.

Structure-Based Drug Design Versus Isolation of Biological Active Compounds from Combinatorial Libraries

Structure-based

Knowledge on location and tertiary structure of the binding site on the target molecule **Combinatorial library**

No structural knowledge on target-binding site required Effective selection and screening procedure required

Drug Discovery:

Synthetic versus natural compounds

(Paradigma Shift for Drug Development)

'70 : Natural Products

'80 : Rational Design

'90 : Combi. Chem. & High-throughput screening (HTS)

'00 : Information Guided Design

'Since then : Combi. Chem. & HTS & Automatization (**Robotic Assays**)

Combinatorial Chemistry Based Drug Discovery

A synthetic strategy which leads to a large set of compounds.

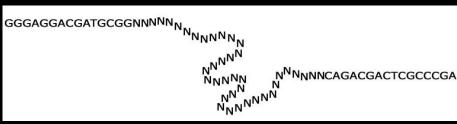
- Synthesis of many structures (diversity)
- Product of matrix chemistry (systematic synthesis)
- High-throughput Screening (HTS)
- Automation of synthesis (speed) and Screening
- Identification of lead compounds and drug development

Compounds Used in Combinatorial Libraries for Drug discovery

Compounds

- Oligonucleotides
- Nucleotide analogs (linked binding elements)
- Peptides
- Peptoids
- Benzodiazepenes
- Beta-Turn-Blocker
- Prostaglandins
- Sialyl-Lewis X
- Polyamines
- Triterpenes
- -Oligocarbamates
- Cocaine /scolopamine analogues

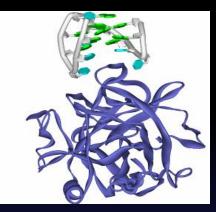
Targets


Enzymes / receptors / ligands Tyrosine kinases Enzymes / receptors / ligands Cholecystokinin and opioid recptors Peptide-, Neurotransmitter receptor antagonist receptor-, peptides-, hormone receptors, enzymes **Thrombin receptor Anti-tumor agents, carbohydrate receptors Neurotransmitter receptors / ion channels Dimerization inhibitors of HIV protease Replication of HIV, thrombin Neurotransmitter receptors, Reuptake systems**

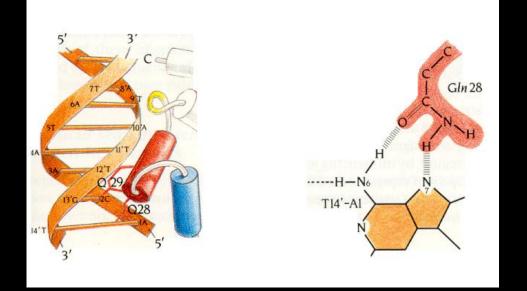
HU

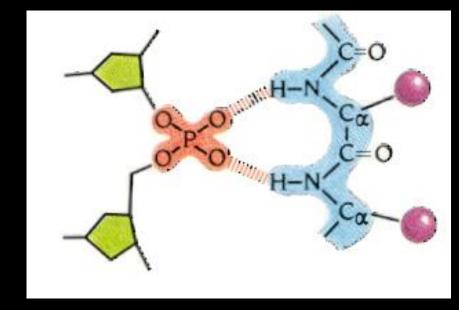
Static versus Dynamic Combinatorial Libraries

Oligonucleotide Combinatorial Libraries


DNA synthesizer

10¹⁶ sequences


GGGAGGACGAGCGGGGGGGGGACAACCAGGAAUAUAUUUGAACCUUCAUUAUAUGCAGACGACCGCCCGA GGGAGGACGAGCGGUUAUGGUGCCGCUUUUAGAACCCUCUAGGUUUUUCUUAGCCAGACGACCGCCCGA GGGAGGACGAGCGGGUGAGGGGGGGGCCGGAUUGACUCUAGAUUCUCACGCUCCUGCAGACGACCGCCCGA GGGAGGACGAGCGGUAACUCCGACCUGUGUGUACCCUCUUCUGUAUUGCCGCCACAGACGACCGCCCGA GGGAGGACGAGCGGGGUGUUCCCCAGUGAAGCGCUUUGAUAUAAACUUGAAAACCAGACGACCGCCCGA GGGAGGACGAGCGGAAAGCCUGCAUCGUAAGCCUCCACAGUAAAUAGCAAAAGUCAGACGACCGCCCGA GGGAGGACGAGCGGGAUGGAAUCUGGAAUAUGCCUUCGUAGAGUCUCCUUGUCUCAGACGACCGCCCGA GGGAGGACGAGCGGAUCUGUCAAGCUUAUAUCCUCUCUAACAUCAUGUUUAGUACAGACGACCGCCCGA GGGAGGACGAGCGGAAGUGGGAUCGGGGGGGGAACUAGUCUGCAAUGUCACAUGACAGACGACCGCCCGA GGGAGGACGAGCGGUUGUCCACAGUAUAUAGAUUUCCAUAUGUUUCCGCGCGGGUCAGACGACCGCCCGA GGGAGGACGAGCGGACGCUCUGCUGUAAAGGAAUACGAUCCCUUGGCAAGCUCGCAGACGACCGCCCGA GGGAGGACGAGCGGCGUGAUCACAUUGUAGCAUCCCUAAUUGCCGCCUUAACGUCAGACGACCGCCCGA GGGAGGACGAGCGGGGGUGUAGCCUGAAGAUCGCCGGACAGAAUGUCGAUGAAAUCAGACGACCGCCCGA GGGAGGACGAGCGGCCAUAUUAGGGCAGUAAAGACGCCCCAAGCAAUUUCGUAUCAGACGACCGCCCGA GGGAGGACGAGCGGUUCGGCCUAGACUCGUAAGCACAUUCAAUAGAACCGAUCACAGACGACCGCCCGA GGGAGGACGAGCGGCGCUAGGGUACCACCGUUGAGCUCCGUUCGAGUUAUUCCCCAGACGACCGCCCGA GGGAGGACGAGCGGUAGUAGGCGCCACCGUUAUGCCACUCAAUAAUUAUCUGCACAGACGACCGCCCGA GGGAGGACGAGCGGGCUGUGGCCCCUGAUAGGCCCACUUGCCUAGAUAUCAGAGCAGACGACCGCCCGA GGGAGGACGAGCGGACGAAUCCGCAACUGAUGCCCUUCAUUAAGUUCUGUCAACCAGACGACCGCCCGA GGGAGGACGAGCGGCGUGUUUUUAUCCGAGAGGCAACUCUUUAUAUUCCCAAUUCAGACGACCGCCCGA GGGAGGACGAGCGGCUUACUCAAUAGCCUAAUCAUCCCCAGGAAUUAAGGAGGGCAGACGACCGCCCGA


Aptamer

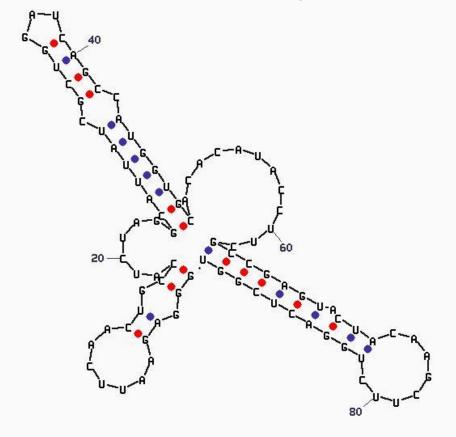
Direct / Indirect Recognition of Protein Sites by Nucleic Acids

Sequence-specific because amino acid side chains H-bond with DNA base pairs in major groove.

Structural basis well understood.

Protein recognizes DNA / RNA structure May be sequence specific

Why to Use Nucleic Acids?

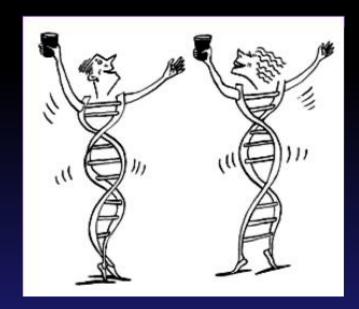

Nucleic acids form complex secondary and tertiary structures and bind with high affinity to their target proteins.

They can be easily amplified using PCR techniques. DNA can be converted to RNA and RNA to DNA by in vitro transcription and reverse transcription procedures.

Oligonucleotide polymers are excellent for in vivo studies as they can be chemically protected against enzymatically degradation.

Oligonucleotides have a low immunogenic potential.

Example for a biological active RNA molecule (aptamer)



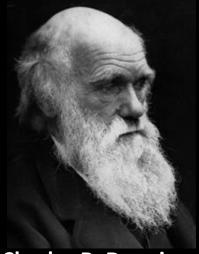
(Systematic Evolution of Ligands by Exponential Enrichment) to find an aptamer (optimal fitting ligand or inhibitor)

with a desired action on the target molecule

The Original Experiment: Selection of RNA Molecules that Bind to T4 DNA-polymerase

Known wild type sequence binding the enzyme: AAUAACUC

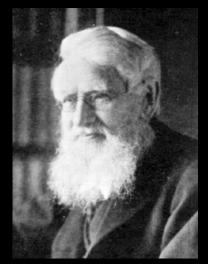
Selected sequence
$$A_{GC}^{AU}AAC_{CU}^{UC}$$
 (from a 8 nt. random sequence)


Sequences found:

AAUAACUC9/20 clones (wild type)AGCAACCU8/20 clones (variation)

The binding constants of these RNAs to T4 DNA-polymerase are equivalent

Tuerk and Gold, Science, 1990


Natural x In vitro Evolution

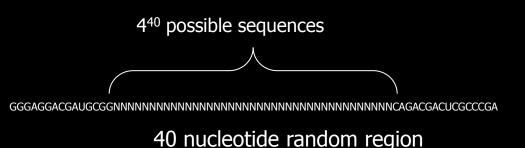
Charles R. Darwin

NATURE

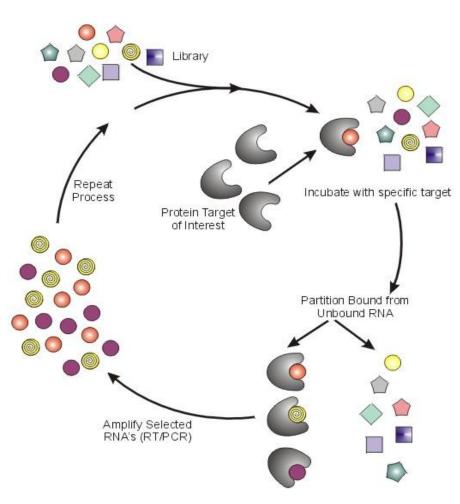
- **Variability in natural populations**
- Natural selection
- **Propagation of selected individuals**

Albert R. Wallace

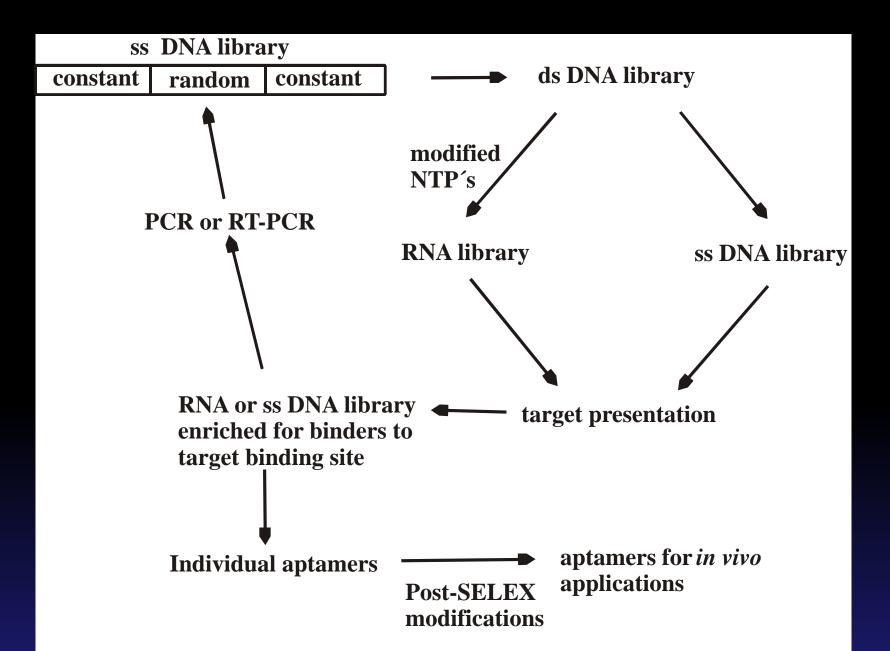
Jack Szostak

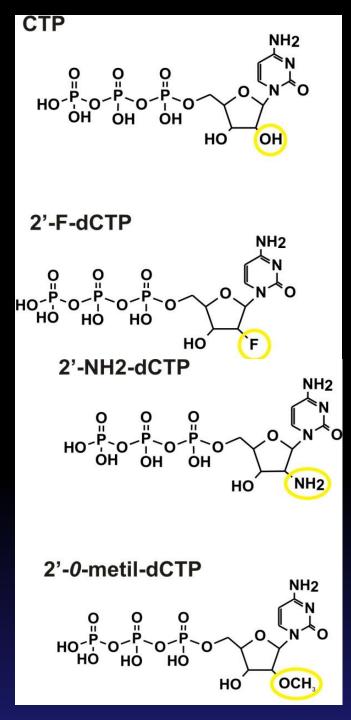

IN A TUBE

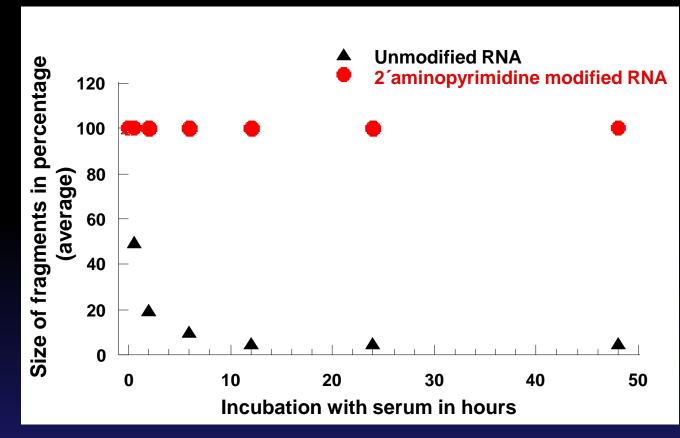
Randomization of nucleic acids (DNA synthesizer) 10¹⁵ sequences and tertiary structures Binding to substrate / protein In vitro amplification (PCR, RT-PCR)


Isolation of Short Oligonucleotides (Aptamers)

Aptamer Library


An aptamer's shape is dictated by its sequence **An Aptamer Library = A Vast Shape Library**


In vitro selection (SELEX)


SELEX = Systematic Evolution of Ligands by Exponential Enrichment

In Vitro Selection of High-affinity DNA and RNA Ligands

Chemical Modification of the 2OH Position of the Ribose of pyrimidines Results in Nuclease-Resistance of the Transcripts

Ulrich et al. Cytometry A, 2004

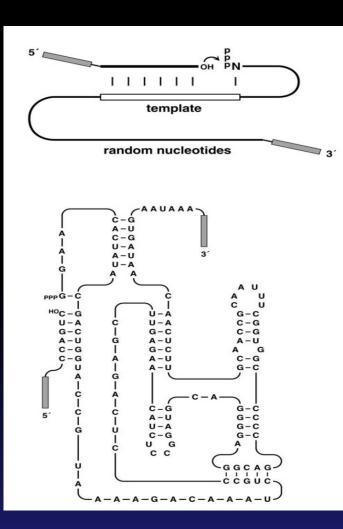
History and Applications of SELEX

In vitro evolution of RNA aptamers (ligands) targeting:

Proteins naturally in contact with nucleic acids Small molecules, organic dyes and short peptide motif

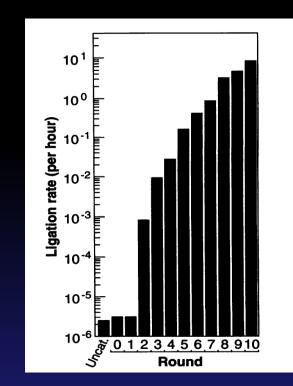
Soluble proteins that do not naturally bind nucleic acids Substance P, <u>VEGF, NGF, FGF</u>, neuropeptide Y,.....

Cell surface antigens CD4, selectins, ...


Whole organisms, cancer and stem cells, membranes and membrane-bound receptors Membrane-bound acetylcholine receptors, erythrocyte ghosts, virus particles, African and American trypanosomes, tumor/normal vasculature, stem/differentiated cells

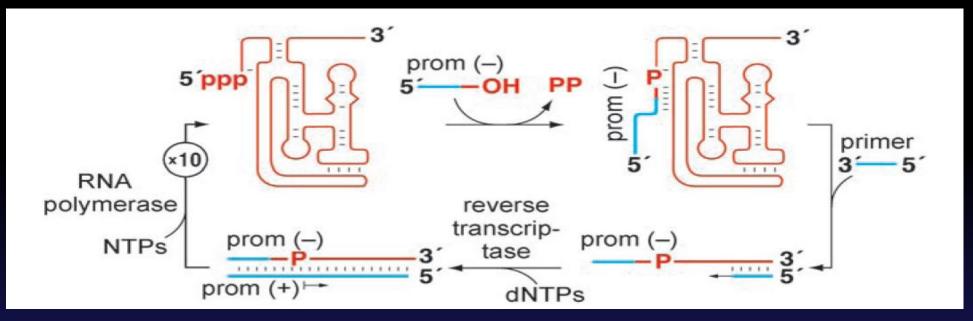
Modulation of intracellular function (intramers) Inhibition of cell division during *Drosophila eye* development

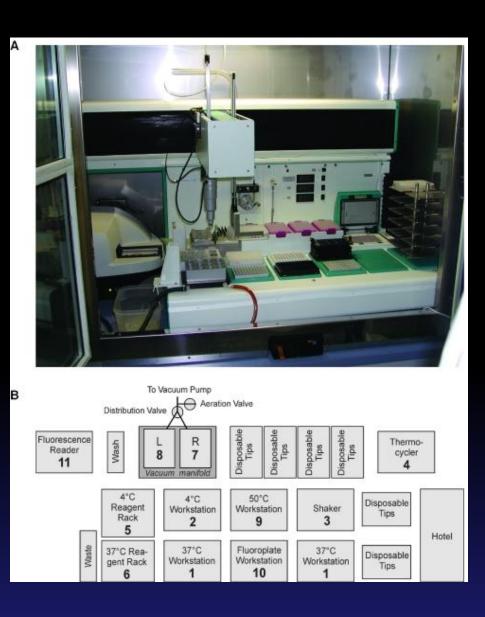
Mapping of ligand-binding sites on proteins

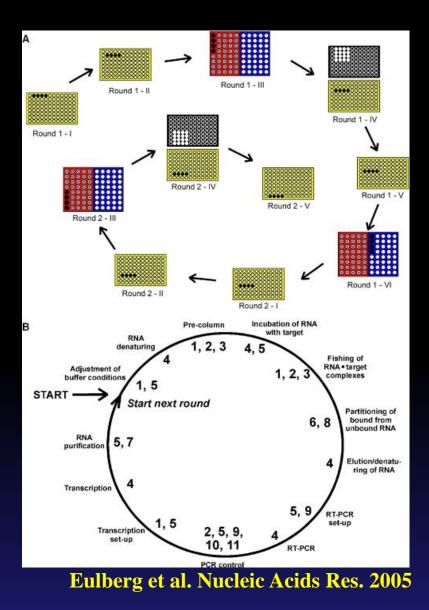

Allosteric aptamer activation and inactivation (aptamer antidotes)

Towards a RNA World

•A RNA replicase made out of RNA


- Library of 10¹⁵ different RNAs
- Selection with substrate specific
- oligo affinity column


Bartel & Szostak, Science 1993


Evolution becomes continous...

• Most in vitro experiments with ribozymes in a stepwise fashion but Continous Evolution seems to be possible!

Aptamers Towards Automatization: Robotic Selection

Aptamers Binding to the Nicotinic Acetylcholine Receptor: Proof of Mechanism

Hypothesis:

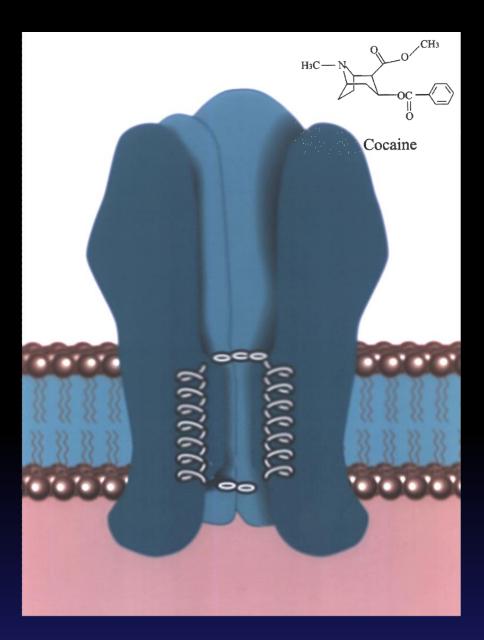
Cocaine does not sterically block the channel pore

Cocaine binds to a regulatory site of the inactive receptor

Proof:

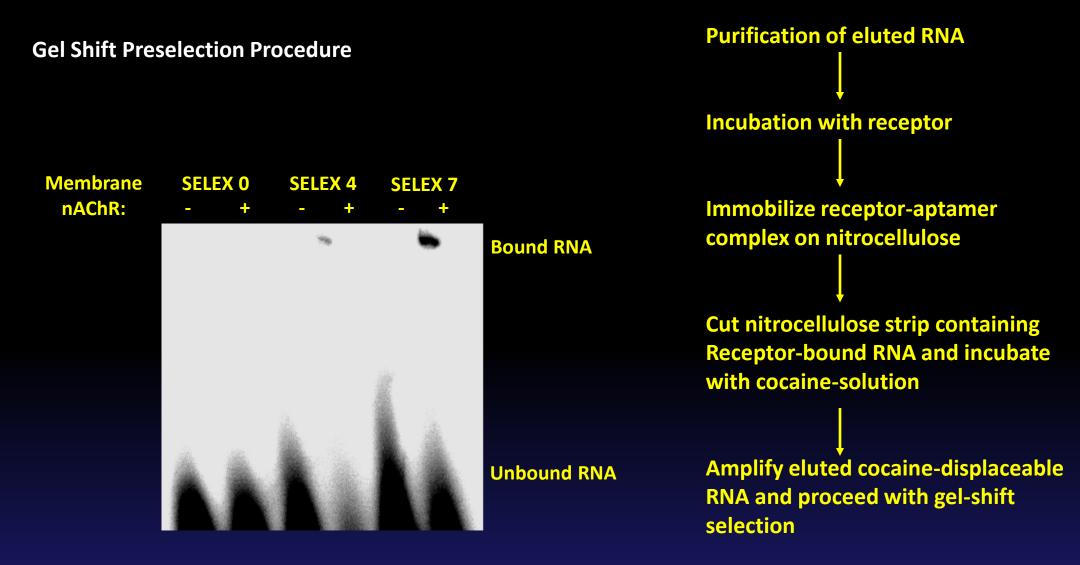
The development of RNA aptamers that bind to an allosteric site of

the acetylcholine receptor and alleviate cocaine inhibition


The muscle-type nAChR ($\alpha 2\beta\gamma\delta$).

Model for studying receptor:

•Electric organ from Torpedo


•BC₃H1 cells expressing the fetal muscle nAChR

Development of an aptamer against a membrane-bound receptor, for the first time!

How to do it?...

SELEX for Aptamers Binding to Membrane Proteins

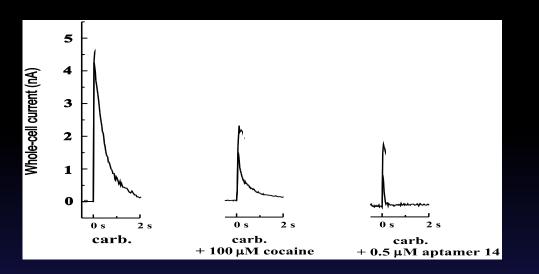
Aptamers Containing Consensus Sequences

#01	ACCCCG <u>UUCACGG</u> UAGCCC
#05	GUGGAAUACACCGACAAG
#06	UCCACCGAUCUAGA
#07	CAACCA <u>GUCACCG</u> UUGCCC
#09	AGUCCU <u>GUGUCCG</u> UUGAAU
#11	UUGCCG <u>GCGACCG</u> CGUUCU
#13	CUGGCG <u>UAGACCG</u> CGCAGA
#14	CAUAGU <u>UUCGCCG</u> CUAUGC
#16	GGAGCG <u>UUGACCG</u> GACCUC
#18	GACUAC <u>GCACCCG</u> CUAGUC
#19	UGAAUA <u>GUCACCG</u> UGAUGA
#20, #21	GCAUUCUUCACCGGAAGUA
"""""""""""""	
#20, #21	UUCGCCGCUGCAC
/	
/	
#22	<u>UUCGCCG</u>CUGCAC
#22 ⁻ #03	<u>UUCGCCG</u> CUGCAC CGCUAG <u>GCUGAA</u> CAC
#22 ⁻ #03 #08	UUCGCCGCUGCAC CGCUAG <u>GCUGAA</u> CAC GAGAUU <u>GCAGAA</u> AAACGC
#22 #03 #08 #23	UUCGCCGCUGCAC CGCUAGGCUGAACAC GAGAUUGCAGAAAAACGC UCCCUAGCUGACGAUGGA
#22 #03 #08 #23 #24	UUCGCCGCUGCAC CGCUAGGCUGAACAC GAGAUUGCAGAAAAACGC UCCCUAGCUGACGAUGGA GCCGACGGUGGACCGUAC
#22 #03 #08 #23 #24 #26	UUCGCCGCUGCAC CGCUAGGCUGAACAC GAGAUUGCAGAAAAACGC UCCCUAGCUGACGAUGGA GCCGACGGUGGACCGUAC ACGCCAGGUGAACCCCUC
#22 #03 #08 #23 #24 #26 #30	UUCGCCGCUGCAC CGCUAGGCUGAACAC GAGAUUGCAGAACAACGC UCCCUAGCUGACGAUGGA GCCGACGGUGGACCGUAC ACGCCAGGUGAACCCCUC AACGCUGAAUCCCCG
#22 #03 #08 #23 #24 #26 #30 #31	UUCGCCGCUGCAC CGCUAGGCUGAACAC GAGAUUGCAGAACAACGC UCCCUAGCUGACGAUGGA GCCGACGGUGGACCGUAC ACGCCAGGUGAACCCCUC AACGCUGAAUCCCCG UACUGAAUCGAUCU

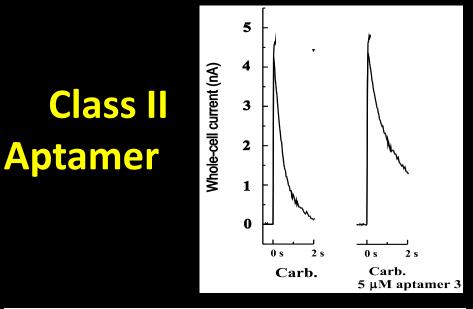
Class I cocaine-displacing aptamers

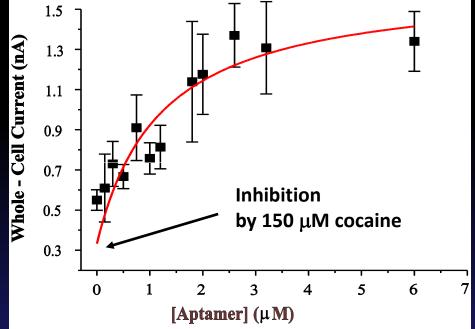
Class II cocaine-displacing aptamers

Ulrich et al., PNAS, 1998


Secondary Structures of Class I and Class II RNA Aptamers

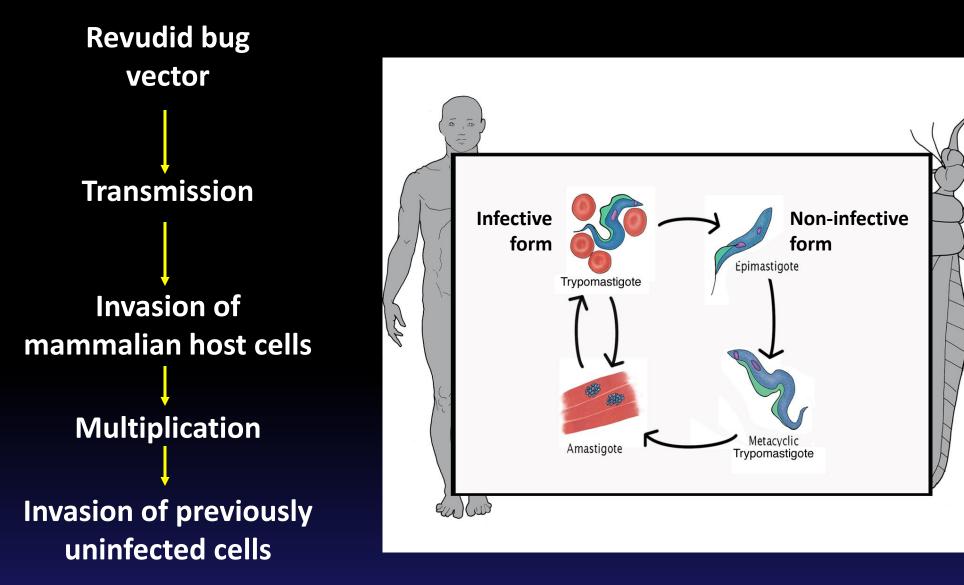
Class I aptamer 14 Inhibitor binds to closed channel-form


Class II aptamer 3 Inhibitor binds equally to open and closed channel-form


Ulrich et al., PNAS, 1998 Hess and Ulrich et al., PNAS, 2000 The Protector: Class II Aptamer 3 Does not Affect nAChR Function, but Displaces Cocaine from the Receptor.

Class I Aptamer

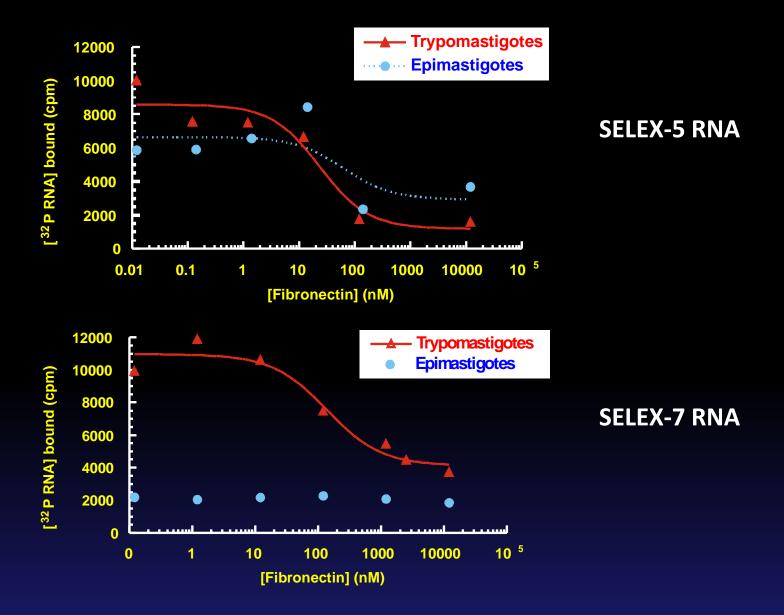
Ulrich et al., PNAS, 1998 Hess and Ulrich et al., PNAS, 2000



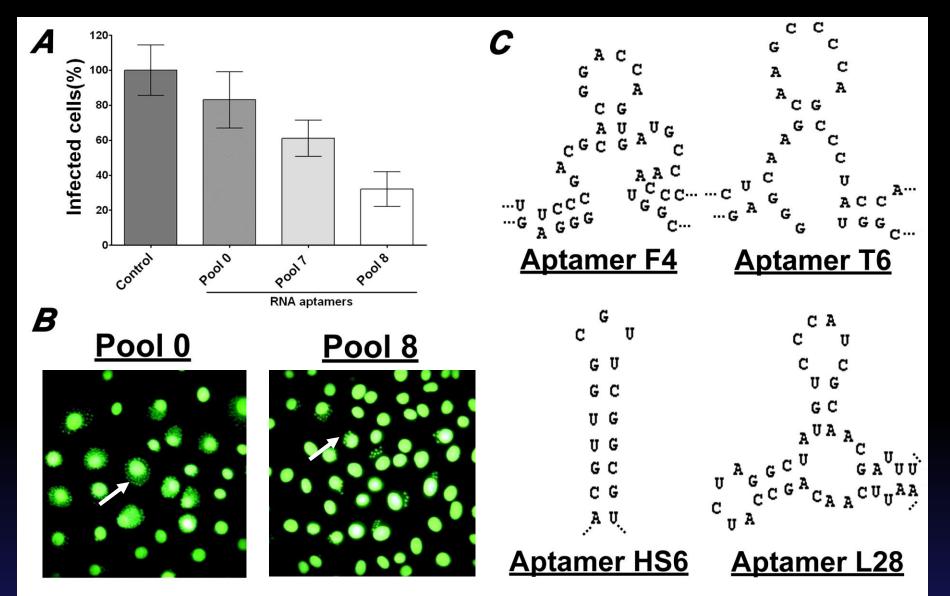


Development of Aptamers as Blockers of Host Cell Invasion by *Trypanosoma cruzi*

Receptor-ligand Interactions between *T. cruzi* and Host-cell Surfaces are Necessary Prerequisites for Host-cell Invasion by the Parasite

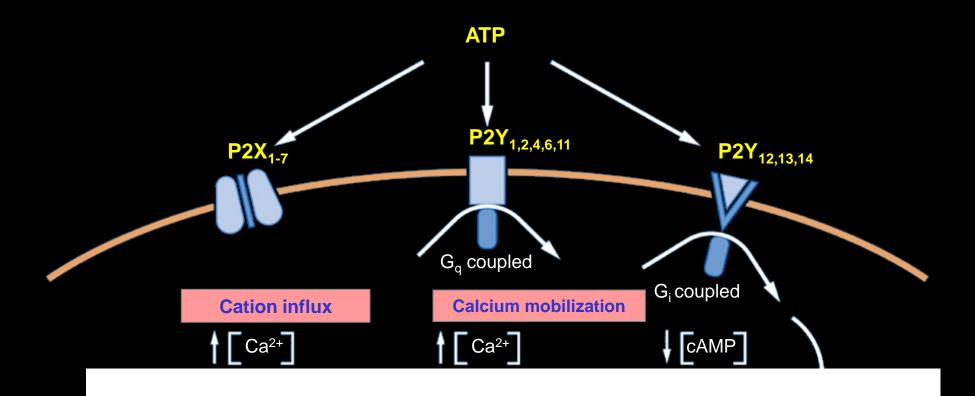


SELEX Procedure for the Evolution of RNA Aptamers that Bind to the Receptors of Host-cell Matrix Molecules on *Trypanosoma cruzi*



Ulrich et al. Braz. J. Med. Biol. Res. 2001

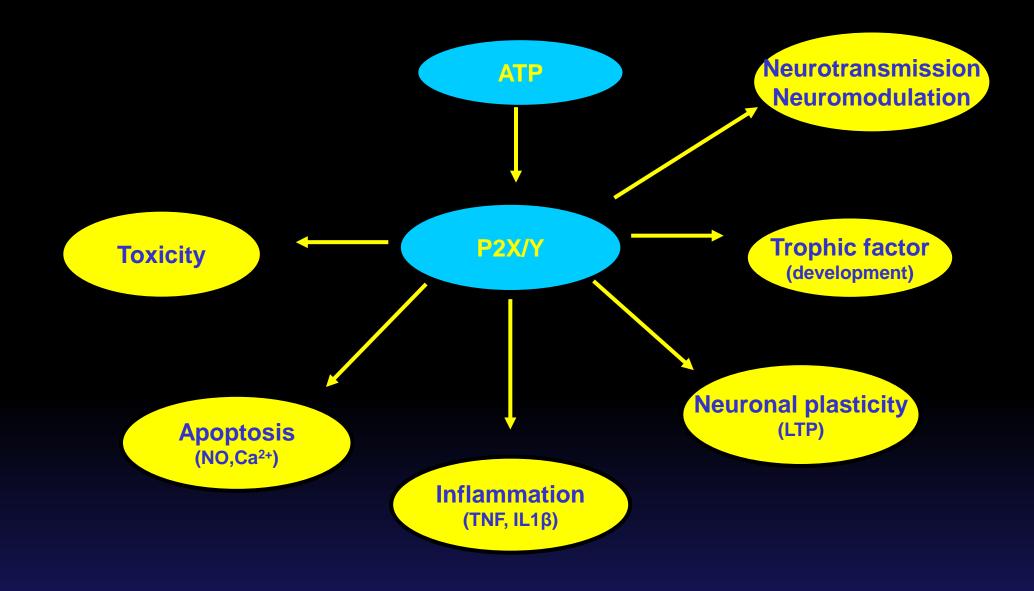
The Selected RNA Molecules Bind Mainly to their Targets on the Infective Trypomastigote Form as Shown by Displacement with Fibronectin

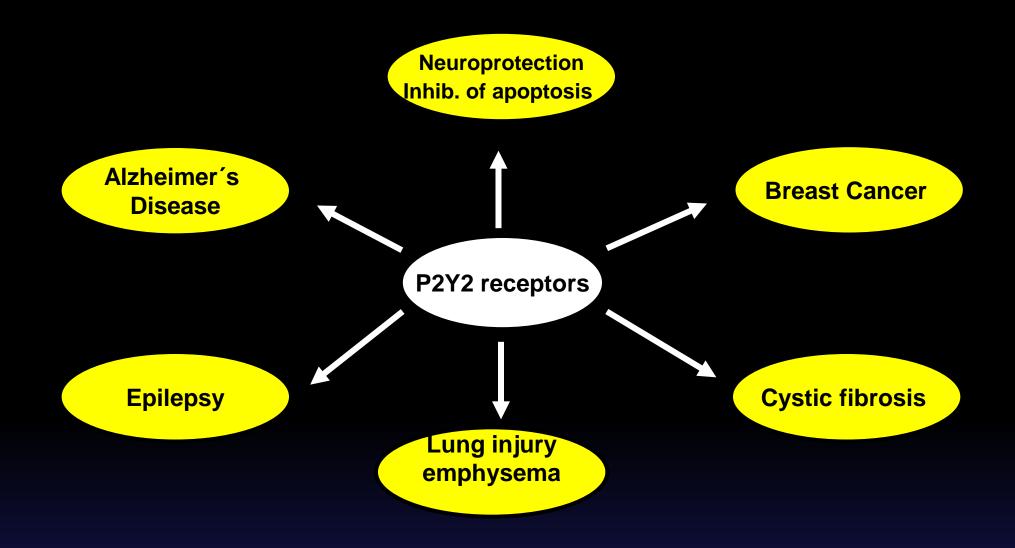

Aptamers acting on Trypanosoma cruzi inhibting cell invasion

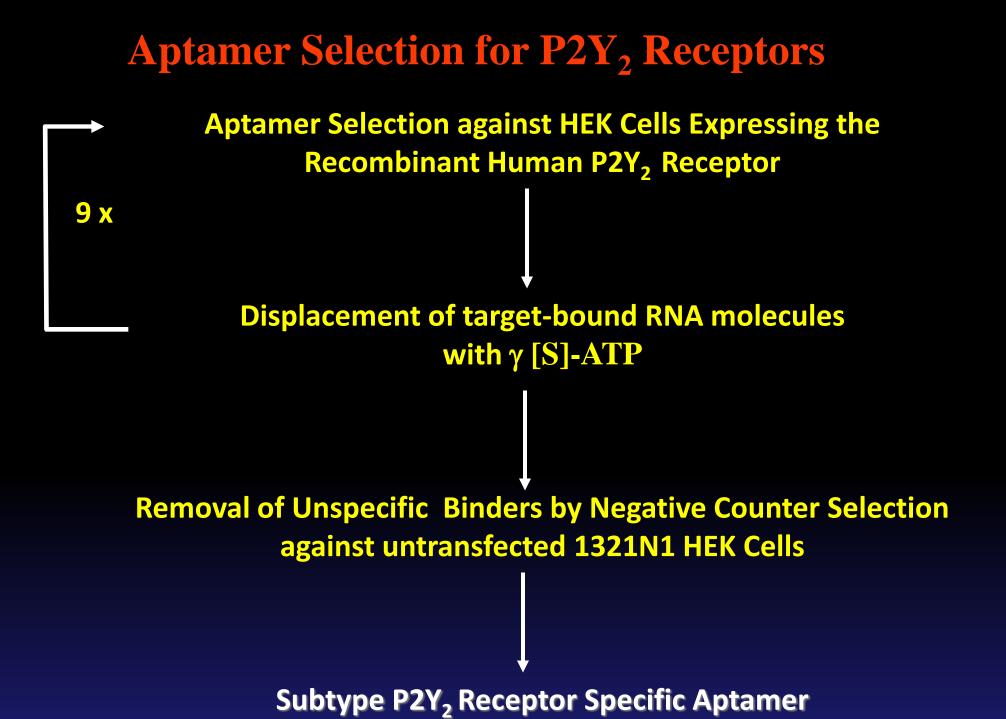
Example 3

SELEX for Specific Inhibitors of the Purinergic Receptor Subtypes

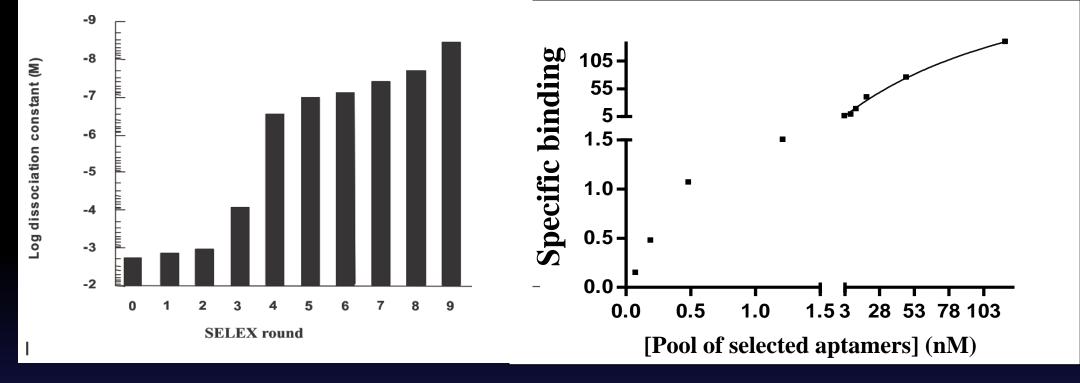
Purinergic P2X and P2Y Receptor Activation



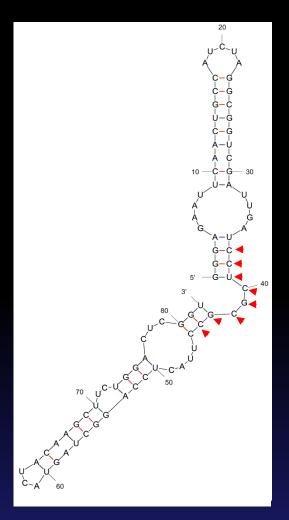

Subtypes P2X₁ – P2X₇


P2Y_{1,2,4,6,11,12,13,14}

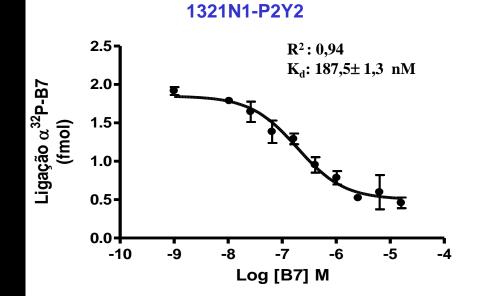
Many receptor subtypes do not have specific agonists and antagonists


Some of the ATP-induced Effects

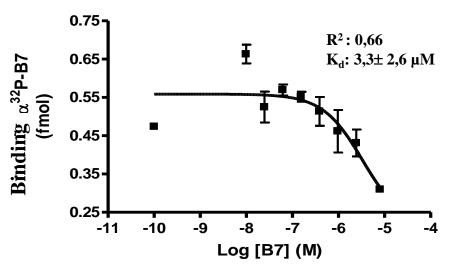
Following Nine Cycles of SELEX, the Selected Pool Binds with Nanomolar Affinities to P2Y2 Receptors Expressed on HEK Cells

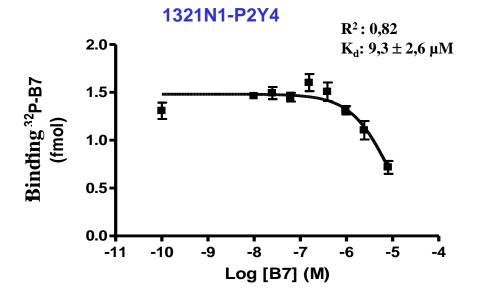


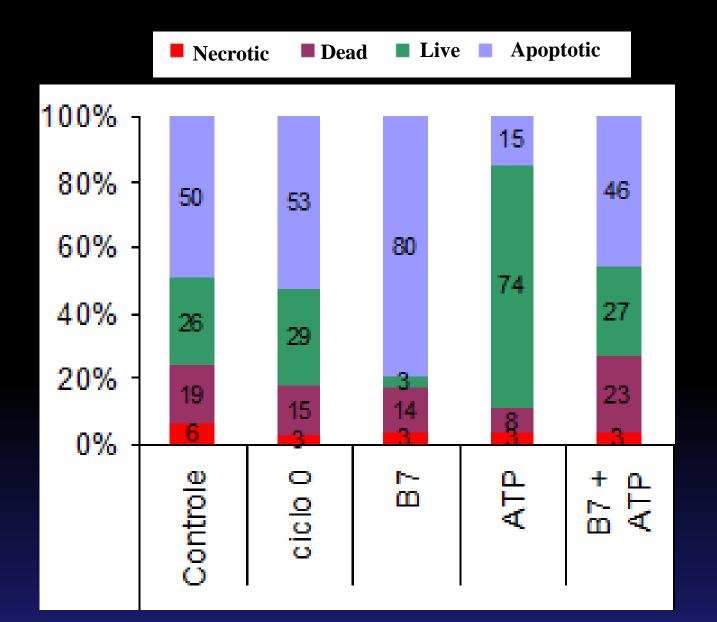
Identified anti-P2Y₂ Aptamers have Conserved Sequence Motifs


A5	CACUGG <u>CCUCGCUG</u> GAACGCUCCGACUCUCGC
B1	GCACUUAGUGUG <u>CCUCGCUG</u> GUCCACCCACAU
C5	UUAAUG <u>CCUCGCUG</u> GAAGUCUCCACUAAUAGC
D7	U <u>GCUCGCAC</u> CUGGAUGUCCUGAUGUCUCUGGCC
D2	GGCGUA <u>ACUCGCGC</u> CUGAUGACUUGACCCUGA
B7,E6,G4	GGUCGAUUGAUCCUCGCGCCUUACUCCAGGCU
C4	AUUGACCUCGCCCACAACCGAUCCAUUAGGU
E3	CACCUGCAAGGG <u>CCUGGGUG</u> UCAGUCGCUCCA
E4	AGC <u>UCUCGGUU</u> CGCUCUCUAGCGAUUUAUUUG
C7 AA	GUCUGCCGGUGUUGUCUUUUC <u>CCUAACUG</u> A
A7	GCGCUG <u>CCUAGCGU</u> GACAGCUUGCAUUGCGGU
В2	AGUAGAUAUCG <u>CCACGCCG</u> CUGCUGGUCCAUC
D5	AAGCCAGCUUGCUUAGACU <u>CCUCCUA</u> UAUGC
F5,H3	CACUCGGUGGUAGCUCGAUCCGCCCAAUUGUC
C2,H1	AGUACGUCUCGAUGCACCAGUGAAUUGUCCCU
F4	AAA <u>CCUAGAUC</u> UCUGUGAGUUCUCUCCUCCUAG
НG	ACCGCGGGAU <u>GCUCACUG</u> AGCAUCUUGUCCCA
C1	CGUUAAGUUCUUACCACCCCCCCAUCGGUA
Fl	GCCCACUAAUUGGCACUGAUU <u>GAACGCUC</u> CGAC
A6	GUUAACGCUAGUUUGGCGUUU <u>CCCCAGUC</u> GAA
G6	AUCCUGCAGAGCCUGG UGGUAGUGUCACCUGA

Consensus	AGUUCACUUC									
Position	1	2	3	4	5	6	7	8	9	10
Base	Α	G	U	U	С	Α	C ou G	U	U	С
Occurrence	14	16	13	12	9	6	11	12	15	14


Aptamer B7


Selected aptamer B7 Preferentially Binds to P2Y2 Receptors


1321N1-P2Y1

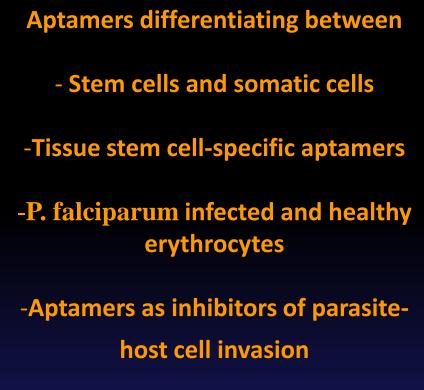
Affinity to P2Y2 receptors is 20-50 times higher than to P2Y1 and P2Y4 receptors

Aptamers Abolish P2Y₂ R-mediated Protection of Embryonal Carcinoma Cells Against Apoptosis

Conclusions:

1. The SELEX technique has been used for the isolation of aptamers either inhibit nicotinic acetylcholine receptors or protect them against inhibition.

2. Aptamers were selected as inhibitors of cell invasion by *T. cruzi* trypomastigotes.

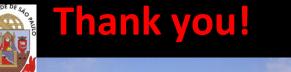

3. Aptamers are able to distinguish between ligand-binding sites of structurally related purinergic receptors.

Robotic, automated SELEX assays shorten the times necessary for aptamer identification and allow simultaneous selection against various target proteins. The identified aptamers came then by used in HTS.

Whole-Cell Aptamer SELEX

Aptamers binding to surface epitopes which are uniquely expressed by a cell-type (recognizing the molecular signature of a cell surface)

	ALVO	K _d [nM]
	HORMONES, GROWTH FACTORS	
	Substance P	190
	Neuropeptíde Y	30
	Nerve growth factor (NGF)	500
	Fibroblast growth factor (b-FGF)	1-3
	Platelet-derived growth factor (PDGF)	0,05
	Vascular endothelial growth factor	0,005-0,05
	Angiopoietin-2	3
MACUGEN	COAGULATION-RELATED PROTEINS	
	Thrombin	25
Pfizer	Factor IXa	0,6
	CELL SURFACE ANTIGENS	
	L-selectin	0,2
	P-selectin	0,2-0,7
	Tenascin C	150
	VIRAL PROTEINS	
	HA1-influenza virus subunit	0,2
	NS3 hepatitis C virus protein	650
	REV-HIV virus protein	76-180
	Muscle nicotinic acetylcholine receptor	3
	GABA Receptor	0,4
	Neurotensin receptor	0,4-19
	Purinergic P2Y2 receptor	168
	Entire organisms	
	Trypanosoma cruzi	40-400
	Trypanosoma brucei	60


In vitro Evolution of RNA Molecules for Therapeutic Applications

Aptamer target molecule	Possible therapeutic application	Status
Nucleolin	Tumor growth	Clinical tests
IL-23	Autoimmune disease	
IgE	Allergic disease	
Anti-AchR-autoantibodies	Myasthenia gravis	
Factor IXa + antidote	Anti-coagulation	Clinical tests
L-selectin	Inflammation	
VEGF	Age-related macular disease	Approved
PDGF	Age-related macular disease	Clinical tests
HIV-1 RT, HIV ver, HIV integrase	Virus replication	Clinical tests
α-thrombin, activated protein C	Thrombosis	Clinical tests
Phosphotyrosine phosphatase	Oncogenesis, viral and cell. regulation	
Phospholipase A2	ARDS, septic shock	
Von Willebrandt factor	Platelet activation, thrombosis	Clinical tests
Aptazymes		
Angiozyme	Inhibition of VEGF-gene expression	Clinical tests
Heptazyme	Ribozyme targeting of highly conserved	Clinical tests
	Hepatitis C Virus sequences	

Aptamers vs. other therapeutics

Property	Small molecule	Aptamer	Antibody
Targets	Active site inhibitors	Extracellular targets	Extracellular targets
Potency	рМ-µМ	pM-nM	pM-nM
Selectivity	Relatively poor	High, easily tuned	High, difficult to adjust
Time to discovery	6-18 mos.	4-6 mos.	12-18 mos.
Manufacture	Chemical, few steps Scalable	Chemical, many steps Scalable	Biologics Limited scalability
Cost of goods	Low	\$100-1,000 / g	\$1,000-10,000 / g
Molecular weight	<500 Da	10,000 Da 50,000 Da (PEG)	180,000 Da
Elimination	hours	min → days	days
Toxicity / immunogenicity	Varies; toxicity is a major concern	No evidence for toxicity or immunogenicity	Varies; immunogenicity is a major concern
Administration	All routes	Intravenous, intramuscular, subcutaneous	Intravenous
Shelf-life	Generally stable	Generally stable	Limited; require refrigeration

Dr. Katia das Neves Gomes Dr. Rodrigo R. Resende Arthur A. Nery

> **Collaborators Prof. George P. Hess**

Prof. Vesna A. Eterovic Prof. Richard M. Hann Universidad del Caribe Profs. Walter Colli & M. Julia M. Alves Dept. de Bioquímica, Instituto de **Química**, USP

Dr. Telma T. Schwindt Dr. Claudiana Lameu **Dr. Priscilla Davidson Negraes Arquimedes** Cheffer **Cleber A. Trujillo** Héllio Danny Nóbrega de Souza **Micheli Pillat Talita Glaser** Isis C. de Nascimento

Depto. of Molecular Biology & Genetics, Cornell University

Dept. of Biochemistry & Nutrition,