FAPESP

International Workshop about Ethanol Combustion Engines Oct 4-5, 2012, São Paulo, Brazil

From Gasoline to Ethanol Direct Injection Engines

Dr. Ernst Winklhofer

AVL List GmbH Graz, Austria and Royal Institute of Technology, Stockholm, Sweden contact: ernst.winklhofer@avl.com

Development trend: Turbocharged GDI engine

Why TC GDI has become today's development focus:

- high potential advantages in exploiting TC and GDI technologies
 - to meet customer expectations
 - · to comply with legal requirements.
- we have learned to exploit such advantages with development techniques taylored to turbocharged gasoline direct injection combustion systems

Meeting drivers' expectations:

Performance development:

TC GDI shows continuous improvements

Gasoline DI is meeting customer expectations and complies with legal requirements

How would Ethanol DI change such diagrams?

Meeting legal requirements: Emissions development: the particle number (mostly soot) example for TC GDI

Fuel features

			Gasoline	Ethanol		
Chemical Formula	(-)	C ₇ H ₁₅		C₂H ₆ O		
Molecular Weight	(-)	99		46		
Carbon Content	(%m)	84.9		52.2		
Hydrogen Content	(%m)	15.1		13.0		
Density Liquid at 20°	(kg/l)	0.740		0.790		
Oxygen Content	(%m)		0	34.8		
Lower Heating Value	(MJ/kg)		42.5	26.8		
Heat of Evaporation	(kJ/MJ)		≈ 8.0	33.8		
Octane Rating RON	(-)		95	>100		
T evaporation	(°C)		25 - 210	78		
Vapor pressure	(hPa)		60 - 90	17		
Ignition temperature	(°C)		400	425		

The Ethanol impact on combustion

Heating Value	inject 1,5 liter Ethanol for 1 liter Gasoline
Evaporation	Ethanol yields better charge cooling
	Ethanol has much higher risk at cold start
Octane number - RON	is a most attractive Ethanol feature

Gasoline – Ethanol comparison:

Ethanol has promising as well as challenging features

- 1. How will such fuel features influence engine operation?
- 2. What does it need to exploit fuel advantages?
- 3. What is required to overcome the risks?

Heating Value	inject 1,5 liter Ethanol for 1 liter Gasoline			
Evaporation	Ethanol yields better charge cooling			
	Ethanol bernuch night risk at cold start			
Octane number - RON	is a most attractive Ethanol feature			

GDI high load operation: the need for fuel enrichment is a desaster for BSFC

Ethanol is most attractive in high load operation

- Charge cooling
- Octane number

The risks

- 1. Handling 50% higher fuel flow needs specific attention in fuel injection development:
 - to meet the oil dilution risk
 - to tune spray wall impingement events
- 2. Exploiting the RON advantage bears risks of high combustion chamber temperatures
 - spark plug, valve and piston durability
 - pre-ignition and irregular combustion
 - run-away knock

Full Load Efficiency with direct injection and turbocharging

Diesel - Gasoline - Ethanol (E85)

Ethanol is most attractive in high load operation

thermodynamic efficiency of a modern Ethanol engine (here on E85) is in good company with best Diesel engines

How to develop an Ethanol DI combustion system?

Heating Value	inject 1,5 liter Ethanol for 1 liter Gasoline		
Evaporation	Ethanol yields better charge cooling		
	Ethanol has much higher risk at cold start		
Octane number - RON	is a most attractive Ethanol feature		

How to develop an Ethanol DI combustion system?

More fuel injected more oil dilution

Fuel evaporation is a big cold start issue

High RON advanced spark timing yields lower exhaust gas temperature, but raises in-cylinder temperature

Fuel features are the guide

What are specific development actions?

...is an issue in every GDI engine, is a much larger issue when using Ethanol

The risk

- oil dilution with secondary lubrication risks
- loss local lubrication
- piston ring damage

Handling 50% higher fuel flow with Ethanol injection

see film for wall wetting effects

70 deg CA ASOI 50

fuel spray and vapor in optical engine

spray footprint on

No fuel liner impingement

...is a much larger issue when using Ethanol

The recipe for improvement:

injection system: select injector and injection parameters

intake ports - airflow: use in-cylinder flow as an air curtain to protect liner surface

This presentation: the tools we use in combustion system development

- 1. Use an optical engine to study mixture formation, ignition and combustion
- at engine start
- in catalyst heating mode
- at low end torque
- 2. Use fiber optic sensor techniques to study high load combustion
- knock
- · pre-ignition and irregular combustion
- · transient operation
- 3. Use thermal radiation techniques to study
- spark plug temperature profiles
- valve temperatures

The cold start risk						
Gasoline Ethanol						
Lower Heating Value	(MJ/kg)		42.5		20.0	
Heat of Evaporation	(kJ/MJ)		≈ 8.0		33.8	
Octane Rating RON	(-)		95			
T evaporation	(°C)		25 - 210		78	
Vapor pressure	(hPa)		60 - 90		17	
Ignition temperature	(°C)		400		425	

Graphic shows pressure and temperature traces at compression ratio = 13. Ethanol eaporation starts later in cycles and needs more heat to evaporate

our chances

- Compressed hot air is only heat source to evaporate Ethanol droplets
- Every droplet on cold combustion chamber wall is lost for ignition / combustion

mixture formation

Cold start: Injection is key to success

What we want to happen

- inject small droplets
- they should float in air
- and evaporate in late compression cycle before ignition

How to operate an injector to accomplish such task?

What we can do: we select -

- fuel rail pressure
- · injection timing,
- · duration and
- multiple injections

Seeing the fuel sprays is understanding the chances for best parameter selection

Cold Start in Transparent Engine at 20 ℃

What we want to happen

- inject small droplets
- they should float in air
- and evaporate in late compression cycle before ignition

What we can do

- inject for minimum wall impingement
- use late injection to exploit compression heat and stratification

م م الالا

mixture formation

Engine start tests with Gasoline and E85

- 1 the Ethanol disadvantage
- improvement with double injection
- My expectations: we exploit development chances with modern injectors

Cold start:

Direct injection offers features to make happen what we want to happen.

This needs efforts

- in enhancing injector spray formation capabilities
- understanding the fuel injection "windows of opportunity"

"low end torque" at 1500 - 1800 rpm

mixture formation and combustion issues at low end torque: LSPI and knock

 fuel evaporation and homogenization at moderate airmotion – risk for oil dilution and wall film formation

LSPI – low speed pre-ignition: low speed = long chemical induction time and high load = high wall temperature yield a

 large time-temperature integral to drive chemical reactions

LSPI chemical species risk from fuel, lube oil, deposits

Low end torque for high dynamic response

Self ignition and irregular combustion events need special development efforts

- we use the optical engine to clarify and improve mixture formation topics at boosted full load injection
- we use fiber optic flame sensors in the normal multicylinder TC engine to <u>minimize risk of irregular combustion</u>

What is "irregular combustion"?

LSPI - as any other irregular ignition event: if we know where it occurs, we may understand why it occurs

Pre-ignition: occurs spontaneously in one out of many cycles

Diagnostics task: find the location of such spontaneous ignition events

Analysis task: find the root cause of preignition

Development task: find ways to avoid / minimize risk of pre-ignition

Irregular combustion LSPI

Low end torque – the LSPI risk

LSPI: low speed pre-ignition

To minimize / avoid pre-ignition it needs diagnostics and analysis in normal multicylinder engine operation.

We use fiber optic spark plug sensors to address this diagnostics task

Arrhenius:
$$\tau = \mathbf{A} * \mathbf{p}^{-\mathbf{n}} * \mathbf{e}^{\frac{\mathbf{B}}{T}}$$
 Livengood, Wu:
$$\int_{t_{IVC}}^{t_{IVC}+t_{SOC}} \frac{1}{\tau(\mathbf{s})} d\mathbf{s} = \mathbf{1}$$

Igniting a mixture: the parameters of influence

A, B, n: chemical features

p, T: engine operation: boost, load

t_{SOC} ~ time to establish thermochemical chain reaction...is driving LSPI

 $\ensuremath{t_{\text{IVC}}}$ intake valve closure time

 $\boldsymbol{\tau}$: ignition delay time

LSPI is member of a large family of irregular combustion events

Focus 2: Irregular combustion

- 1. Use an optical engine to study mixture formation, ignition and combustion
- at engine start
- in catalyst heating mode
- at low end torque
- 2. Use fiber optic sensor techniques to study high load combustion
- knock
- pre-ignition and irregular combustion
- transient operation
- 3. Use thermal radiation techniques to study
- spark plug temperature profiles
- valve temperatures

A fiber optic spark plug sensor for PI location diagnostics

A and B: flame and pressure signal of pre-ignition cycle.
C: locations of repeated PI events

Irregular combustion LSPI

Low end torque – pre-ignition diagnostics with pressure and flame sensors

The spontaneous occurrance of PI events needs continuous signal recording and signal storage with trigger - on - event logics.

this brings us to the more general topic of irregular ignition / combustion events

ptnss 2011

Pre-ignition: if we know where it occurs, we may understand why it occurs

hot spark plug ?
hot exhaust valves ?
hot piston ?
hot cylinder head surface ?

Irregular combustion HSPI

The <u>high speed</u> pre-ignition risk

HSPI: high speed pre-ignition

Ethanol Octane number allows spark timing to provide maximum torque with stoichiometric mixture even at high speed / high load operation.

This gives higher thermodynamic efficiency at the risk of higher combustion chamber temperature.

Igniting a mixture: the parameters of influence A, B, n: chemical features

p, T: engine operation: boost, load...is driving high speed PI

 $t_{SOC} \sim time to establish thermochemical chain reaction$

 \mathbf{t}_{IVC} intake valve closure time

 $\boldsymbol{\tau}$: ignition delay time

Pre-ignition: if we know where it occurs, we may understand why it occurs

hot spark plug ?
hot exhaust valves
hot piston ?
hot cylinder head surface ?

Irregular combustion HSPI

The high speed pre-ignition risk

Example shows one pre-ignition cycle with flame signal recorded with 40-channel VisioKnock spark plug sensor.

- Sensor channel identifies sector at which pre-ignition occurs.
- Collecting repeated PI events shows that PI always occurs within sector comprising exhaust valves.
- Recommended action: improve valve seat cooling, select cooled exhaust valves.

A runaway knock example in a GDI engine at a "thermal stress test"

Result for this operating point:

engine needs >10 strong knock cycles to go into glow ignition

Result for engine testing:

- use SA (knock) versus time for thermal stress test
- use test bed watchdog to reduce testing risk
- use (partial) fuel cut to protect engine
- use thermal radiation signal to detect thermal runaway risk

Irregular combustion

The knock - runaway knock risk

Ethanol Octane number allows spark timing to provide maximum torque with stoichiometric mixture even at high speed / high load operation.

This gives high thermodynamic efficiency at the cost of high combustion chamber temperature.

The consequence in case of "spark knock":

- knock introduces high heat flux through combustion chamber surface, this raises local surface temperature
- subsequent cycles may run into pre-ignition mode
- Stopping pre-ignition needs fuel cut

Pre-ignition: if we know where it occurs, we may understand why it occurs

Signal analysis:

sector: is resolved with sensor channel

radial position: is reconstructed from flame speed and

flame propagation interval

above data were recorded with 80# spark plug sensor

Irregular combustion

The chemical species risk

In addition to fuel – air mixture there is oil, oil vapor, EGR, and deposits inside the combustion chamber.

- chemical kinetics of such species can introduce PI
- glowing deposits and free moving hot deposit flakes can survive one exhaust stroke and ignite fresh charge before spark ignition

Igniting a mixture: the parameters of influence A, B, n: chemical features...is driving chemical species PI

p, T: engine operation: boost, load $t_{\text{SOC}} \sim \text{time to establish thermochemical chain reaction}$

 t_{IVC} intake valve closure time τ : ignition delay time

This presentation

Focus 3: in-cylinder temperatures

- 1. Use an optical engine to study mixture formation, ignition and combustion
- at engine start
- in catalyst heating mode
- at low end torque
- 2. Use fiber optic sensor techniques to study high load combustion
- knock
- pre-ignition and irregular combustion
- transient operation
- 3. Use thermal radiation techniques to study
- spark plug temperature profiles
- valve temperatures

in-cylinder temperatures

Endoscope access into combustion chamber, IR sensitive camera

thermal image of hot combustion chamber surfaces

calibrated temperature field

"Single shot" thermal imaging

Example shows gasoline engine thermal images. Temperatures in Ethanol engines are even more critical with risk of thermal pre-ignition or thermal damage of components.

Thermal imaging with endoscope, IR camera and temperature calibration techniques provides variants analysis in normal engine operation.

in-cylinder temperatures

access to valves with fiber optic spark plug sensors

example shows valve temperature response to knocking combustion cycles in GDI engine

Continuous, cycle and crank angle resolved thermal radiation measurement

.

Thermal risk analysis at load transients needs continuous signal recording:

- Fiber optic spark plug sensors access thermal radiation, IR sensitive photo diodes (PD) record radiation signals.
- Signal calibration is achieved with specific calibration device

From Gasoline to Ethanol Direct Injection Engines

Summary

- Fuel features guide and dictate Ethanol engine development efforts
- Direct injection together with turbocharging appears to best handle fuel obstacles and exploit fuel benefits
- 3. GDI development methods are well applicable to Ethanol engines across the entire load, speed and temperature range of a modern engine

From Gasoline to Ethanol Direct Injection Engines

References

P.E. Kapus, A. Fuerhapter, H. Fuchs, G.K. Fraidl: "Ethanol Direct Injection on Turbocharged SI Engines – Potential and Challenges", SAE2007-01-1408

Paul Whitaker: "Turbocharged Spark Ignited Direct Injection – A Fuel Economy Solution for The US", DEER Conference 2009

Per Stålhammar, "Optimized SI engines for high octane bio-fuels"
3rd IQPC Conference Automotive Biofuels - Challenges of the combustion engine, 29.-31. August 2011, Berlin, Germany

Paul Whitaker et al.: "Development of the Combustion System for a V8 Flexible Fuel Turbocharged Direct Injection Engine" 10PFL-0628, SAE 2010

Hirsch Alois, Kapus Paul, Philipp Harald, Winklhofer Ernst: "IRREGULAR IGNITION EVENTS IN TC GDI ENGINES: PHENOMENOLOGY, ANALYSIS AND ENGINE DEVELOPMENT" PTNSS CONGRESS-2010, Poland

H. Fuchs, W. Hopfner, P. Kapus, E. Winklhofer: "Methods and criteria for fuel injector integration in boosted gasoline direct injection engines", IMECHE conference on "Injection systems for IC engines" conference on 13 – 14 May 2009, London