

The University of Manchester

Brazilian ChemComm Symposium – Chemistry and Sustainable Energy 05/11/2012 - FAPESP - São Paulo

Design and Evolution of New Biocatalysts for Organic Synthesis

Nicholas J. Turner School of Chemistry & Manchester Institute of Biotechnology, University of Manchester, UK

> Brazilian ChemComm Symposium FASEP, Sao Paulo, Brazil 5th November 2012

Biocatalysis in Synthesis

- Biocatalysts can replace chemo-catalysts in synthetic routes (e.g. KRED for ketone reduction).
- Biocatalysts can also enable new synthetic pathways which may be shorter and more efficient.
- Combining bio- and chemo-catalysis generates further opportunities for new synthetic routes.
- Need biocatalysts with broad substrate scope that are active and stable under the conditions of a chemical process.

Montelukast

D. Rozzell and J. Liang, Speciality Chemicals Magazine, 2008, 36.

Montelukast

Comparison of biocatalytic and (S)-DIP-Cl process metrics for MLK-II to MLK-III

<u>Parameter</u>	Biocatalytic Process	(S)-DIP-Cl Process
Ketone Concentration	100g/L	100g/L
Catalytic/Stoichiometric	Catalytic	1.8 eq DIP-Cl
Temperature	45 °C	-25 °C
Conversion	99.3%	Not provided
Product Isolation	Direct filtration	Extraction with high dilution
Enantiomeric Excess	>99.9%	99.2% (after recryst.)
Solvent/MLK-III (L/Kg)	6	30-50
Solvents Used	IPA, H₂O, toluene	DCM, THF
Other Waste Generation	Biodegradable enzyme, cofactor	Non-biodegradable borate salts
		Other inorganics, 3.6 eq. pinene

D. Rozzell and J. Liang, Speciality Chemicals Magazine, 2008, 36.

Biocatalysis in Synthesis

- Can we design new & general synthetic routes to target classes (e.g. amino acids, alkaloids, terpenes etc.) based upon bioand chemo-catalysis?
- Can we develop guidelines for route design for synthetic chemists (retro-biocatalysis).
- Where are the gaps in biocatalysis which reactions are currently not available?
- How can we expand the **biocatalysis toolbox**?

Alkaloids

Biosynthesis \checkmark Total Synthesis \checkmark Biocatalysis?

Synthetic APIs

Levocetirizine

Solifenacin

Telaprevir

Synthetic Biology

Directed evolution of MAO-N

>10³ improvement in k_{cat} e.e >98%

MAO-N D11 crystal structure

In collaboration with Gideon Grogan and Annika Frank (University of York)

Sequence diversity

Deracemisation of API building blocks

4-chlorobenzhydrylamine:

1-phenyltetrahydroisoquinoline:

Diego Ghislieri

Deracemisation of tetrahydro-β-carbolines

Eleagnine:

Harmicine:

Diego Ghislieri

4 reactions: 1 x C-C; 2 x Ox; 1 x Red

Diego Ghislieri with Anthony Green and Marta Pontini

MAO-N / ATH tandem reaction

In collaboration with Tom Ward, Valentin Koehler (University of Basel)

MAO-N / ω-TA tandem reaction

Diego Ghislieri & Jennifer Hopwood

MAO-N / ω-TA tandem reaction

R ¹	R ²	Transaminase	ee 2 (%)	de 3 (%)
Me	Bn	(S)-C. violaceum	>99 (S)	80 (2 <i>R</i> ,5 <i>S</i>)
Me	Bn	(R)-Arthrobacter	>99 (<i>R</i>)	99 (2 <i>R</i> ,5 <i>R</i>)
Et	Ph	(S)-C. violaceum	>99 (S)	94 (2 <i>R</i> ,5 <i>S</i>)
Me	Me	(S)-C. violaceum	>99 (<i>S</i>)	99 (imine reductase)
Me	Me	(R)-Arthrobacter	>99 (<i>R</i>)	99 (imine reductase)

MAO-N / ω-TA tandem reaction

Hepatitis C viral protease inhibitors

Telaprevir (Vertex - Phase III)

P. Revill et al., Drugs Future 2007, 788

SCH 503034 (Schering-Plough - Phase III)

Desymmetrisation of symmetrical amines

V. Koehler, N.J. Turner et al., Angew. Chem. Int. Ed., 2010, 49, 2182.

Synthesis of bicyclic amino acid

V. Koehler, N.J. Turner et al., Angew. Chem. Int. Ed., 2010, 49, 2182.

Multi-component reactions with Romano Orru (Amsterdam)

A. Znabet, R. Orru, N.J. Turner et al., Angew. Chem. Int. Ed., 2010, 49, 5289.

Multi-component synthesis of telaprevir

Reagents and conditions: a) MAO-N, 100 mM KPO4, pH = 8.0, 37 °C, then: b) 1,2, CH_2CI_2 , 50%; c) K_2CO_3 , MeOH; d) Dess-Martin, CH_2CI_2 , 50% over 2 steps.

A. Znabet, R. Orru, N.J. Turner et al., Chem. Commun., 2010, 7918.

Acknowledgements

Amine biocatalysis:

Diego Ghislieri, Jennifer Hopwood, Bas Groenendaal, Marta Pontini, Friedemann Leipold, Kirk Malone, Simon Willies, Rehanna Aslam, (Renate Reiss, Valentin Koehler)

P450 monooxygenase: Elaine O'Reilly, Paul Kelly, Slavomira Husarova

Galactose oxidase: Sam Staniland, Damian Debecker

Ammonia lyase:

Ian Rowles, Sarah Lovelock, Rachel Heath, Nick Weise

Lignin degradation/biorefinery: Mark Corbett, Emma Fellows, Lucy Heap, Chris Spencer, Claire Doherty

Carboxylic acid reductase et al: Katharina Hugentobler, Andy Hill

Manchester Central, UK

21st-25th July 2013

www.biotrans2013.com

Chris Blanford (Manchester, UK) Bernhard Hauer (Stuttgart, DE) Yukishige Ito (Riken, JP) Wolfgang Kroutil (Graz, AU) Gerrit Poelarends (Groningen, NL) Huimin Zhao (Chicago, USA) Andy Bommarius (Georgia Tech, USA) Donald Hilvert (Zurich, CH) Michael Mueller (Freiburg, DE) Monica Palcic (Copenhagen, DK) Doerte Rother (Juelich, DE)