

Discovery and Development of Novel Benzoxaboroles to Treat Kinetoplastid Diseases

Robert T. Jacobs, PhD Vice President, Chemistry November 13, 2014

Boron has a Unique Bonding Orbital Configuration: An Empty P-Orbital¹

- Boron has an empty P-orbital & can form a new bond under specific conditions
- The new bond forms a tetrahedral structure
- Exploitation of P-Orbital Expands Drug Design Possibilities

History and Overview of Boronic Acid Drug Discovery Efforts¹

Design of boronic acid enzyme inhibitors initiated in 1970s

Multiple disease targets have been pursued

•Velcade® (bortezomib) was approved by FDA in 2008 for use in multiple myeloma²

•KERYDIN™ (tavaborole) topical solution, 5% was approved by FDA in 2014 for topical treatment of onychomycosis³

- 1 Baker et al. (2009) Future Medicinal Chemistry, 1(7), 1275-1288.
 - US Dept of Health and Human Services, www.fda.gov, June 23, 2008
- 3 KERYDIN™ (Tavaborole) Topical Soltuion, 5%, Package Insert. Palo Alto, CA: Anacor Pharmaceuticals, Inc.; 2014

Summary of Modes of Interaction of Anacor Boron Compounds with Biological Targets

All shown by X-Ray Crystallography

Covalent Boron Interaction with Activated Cis-diol

LeuRS Inhibitor1

Covalent Boron Interaction with NAD+ OH

Oxidoreductases²

Serine Protease³

Oxaborole Metal Chelating Interaction -zn HO-B-R

PDE4⁴

- . Rock, F etal (2007) Science, **316**, 1759-1761.
- Anacor Pharmaceuticals, X-ray data on file, March 2011.
 Li, X etal (2010) *Bioorg. Med. Chem. Lett.*, 20, 5695-5700.
- 4. Freund, Y etal (2012) FEBS Lett., **586**, 3410-3414.
- 5. Akama, T etal (2013) *J. Pharm. Exp. Ther.*, **347**, 615-625.

Covalent Bonding

Metal Interaction

Hydrogen bonding

Conventional Hydrogen Bonding Interaction

Kinase Inhibitor⁵

Anacor's Boron Chemistry Pipeline for Neglected Diseases

Anacor's Boron Chemistry Technology Has Delivered 8 Drug Candidates

Human African Trypanosomiasis (HAT): "Sleeping Sickness"

- Caused by the single cell parasite *Trypanosoma brucei sp*.
- Transmitted through bite of tsetse fly
- 55 million at risk in 36 countries in sub-Saharan Africa¹
 - Estimated 10-20 thousand deaths per year
- Disease progresses through two stages; timing dependent upon parasite strain
 - Stage 1 HAT: Parasites restricted to blood, symptoms are mild
 - Stage 2 HAT: Parasites have invaded the brain, symptoms are more severe, ultimately leads to coma and death²

¹ WHO. Human African trypanosomiasis (sleeping sickness): epidemiological update. Wkly Epidemiol. Rec. 81 (8), 71-80 (2006)

² Grab, DJ, etal. J. Neuroviral. 14(5), 344 -351 (2008)

HAT Collaboration: Partners

- Anacor (Palo Alto, California)
 - Founded in 2002; drug discovery company based on a boron chemistry platform; products and clinical candidates in anti-fungal, anti-inflammatory and anti-infective applications
- Drugs for Neglected Diseases initiative (Geneva, Switzerland)
 - Founded in 2003; ~ 100 staff; origins with MSF; non-profit, virtual R&D organization focused on neglected diseases
- SCYNEXIS (RTP, North Carolina)
 - Founded in 2000; ~ 100 employees; contract drug discovery/development focus
 - Responsible for medicinal chemistry, in vitro biology and DMPK
- Haskins Laboratories, Pace University (New York, NY)
 - Established 1977; interdisciplinary research in kinetoplastids and related parasites; discovered effornithine (DFMO) for stage 2 HAT
 - Responsible for in vivo evaluation of compounds in HAT models
- Swiss Tropical and Public Health Institute (Basel, Switzerland)
 - Founded in 1943; ~ 500 staff; world-leading expertise in HAT research and clinical applications of HAT drugs

Benzoxaboroles: Project Progression^{1,2}

 Initial screening hit identified at UCSF Sandler Center (J. McKerrow)

AN2920

 Initial "lead" identified from further screening and early SAR development at SCYNEXIS

AN4169

AN5568

 Optimized lead which was progressed to preclinical and clinical evaluation³

¹Jacobs, R.T., etal, Future Med Chem **2011**, 3, 1259 ²Nare, B., etal, Antimicrobial Agents Chemotherapy **2010**, 54, 4379 ³Jacobs, R.T., etal, PLoS Negl Trop Dis **2011**, 5, e1151

AN5568 (SCYX-7158): Interim Pharmacokinetics in Healthy Human Subjects¹

- The geometric mean value for half-life across the 20 160 mg treatment groups is 325 hr/ 13.5 days (range, 259 402 hr/ 10.8 16.8 days).
- The prolonged half-life is consistent with a single dose treatment, which is desirable to mitigate against potential treatment failures from poor compliance.

¹ Wring, S, etal, 62nd ASTMH Meeting, November 2013, Poster LB-2117. Available at www.dndi.org/media-center.

Trypanosoma cruzi and Chagas Disease

- 25-100 million at risk, mostly in Latin America^{1,2}
- At least 7.6 million people infected²
- Transmitted by triatomine insects, blood transfusion, organ transplantation, congenitally, or orally³
- Largest parasitic cause of death in western hemisphere and leading infectious cause of cardiomyopathy³
- Usually controlled by immune response, but not eliminated
- Majority of patients undiagnosed until decades into the infection
- Up to 30% of chronically infected people develop cardiac alterations, and up to 10% develop digestive, neurological or mixed alterations³
- Estimated that <1% of infected people get treatment
- Zoonotic infection will not be eradicated
- Solution for control reduce transmission, survey for infected, treat those infected

¹ Hotez, P etal (2007) New Engl J Med, **357**, 1018-27.

² WHO Technical Report 975 (2012) http://www.who.int/tdr/publications.

³ Coura, J etal (2002) Mem Inst Oswaldo Cruz, **97**, 3-24.

Like Benznidazole, AN4169 Exhibits Attractive in vitro Activity and Speed of Kill¹

Like benznidazole, AN4169 is highly active against *T. cruzi* strains from DTUs I-VI.

Like benznidazole, AN4169 exhibits fast trypanocidal activity and can significantly reduce intracellular *T. cruzi* with 24-48 h exposure

¹ Moreas, C.B., etal. (2014) Nature Scientific Reports 4, 4703. doi: 10.1038/srep04703

Rapid and "cure" assays suggest comparable results for Nifurtimox and AN4169

- Canavaci, AM, etal (2010) PLoS Negl Trop Dis e740
- ² Bustamante, J etal, (2014) *J. Infect. Dis.*, 209, 150

Summary

- Benzoxaboroles have been a rich source of leads for development of new drugs to address the significant unmet medical need in kinetoplastid diseases.¹
- The most advanced benzoxaborole designed to treat a kinetoplastid disease is AN5568 (SCYX-7158), which has recently completed Phase 1 clinical trials for HAT, with Phase 2 clinical trials anticipated to begin in 2015.²
- Screening of the benzoxaboroles against *T. cruzi* and *Leishmania spp*. has provided good leads for treatment of diseases caused by these parasites as well.
- The lead compound AN4169 has demonstrated good activity across a phylogenetically diverse panel of *T. cruzi* parasites,³ and has shown activity in both rapid screening and chronic cure models in mice.^{4,5}

¹ Jacobs, R.T. etal, (2011) Curr Opin Infect Dis, 24, 586-592.

² Jacobs, R.T., etal, (2011) *PLoS Negl Trop Dis*, *5*, e1151

³ Moreas, C.B., etal. (2014) *Nature Scientific Reports*, 4, 4703. doi: 10.1038/srep04703

⁴ Canavaci, AM, etal (2010) PLoS Negl Trop Dis e740

⁵ Bustamante, J etal, (2014) *J Infect Dis*, 209, 150

Acknowledgements

Anacor

- Tsutomu Akama
- Dickon Alley
- Pam Berry
- Eric Easom
- Yvonne Freund
- Vincent Hernandez
- Kurt Jarnagin
- Jake Plattner
- Fernando Rock
- Rianna Stefanakis
- YK Zhang
- Yasheen Zhou

Funding

- Bill and Melinda Gates Foundation
- Wellcome Trust

DNDi

- Graeme Bilbe
- Stephanie Braillard
- Eric Chatelain
- Shing Chang
- Simon Croft
- Rob Don
- Delphine Launay
- Charles Mowbray
- Denis Martin

Pace University

- Cy Bacchi
- Nigel Yarlett

SCYNEXIS

- Daitao Chen
- Bakela Nare
- Matt Orr
- Jessica Sligar
- Steve Wring

University of Georgia

- Rick Tarleton
- Juan Bustamante