Open Innovation and MoA Tools for Kinetoplastids and Antimalarial Drug Discovery
 Javier Gamo
 FiS_NeglectedDiseases
 Sao Paulo, Nov 144t, 2014

- DDW focused research in diseases of the developing world
- Three different units and models sharing a common goal
- Strategy of Kinetoplastids Discovery Unit
- Objectives of Malaria DPU
- Mode of action tools to identify differentiated antimalarials
- Case study: result of strategy

Tres Cantos Medicines Development Campus

DDW: One site and three DPUs with different business

model

[^0]
Kinetoplastids DPU - Strategy

-Through a virtual model, act as a catalyst to discover medicines in Sleeping Sickness, Chagas Disease and Leishmaniasis

Build a Sustainable Pipeline

-Focus Lead ID through phenotypic assays
-Target-based approach opportunistically (Open lab)

- BD
- Repositioning

Fill Scientific capability gaps

- Focus on scientific needs and tools for DD.
- In vitro assays
- Translational studies; animal models; PK/PD
- Biomarkers, diagnostic, etc
- MoA, etc

Partnership model

- Partners bring parasite and disease expertise.
- GSK brings Drug

Discovery expertise

wellcometrust

DNDi
Drugs for Neglected Diseases initiative

Kinetoplastids DPU: Kinetoplastid-Porfolio Highlights

Malaria DPU: identifying differentiated antimalarials

Deliver a new class of dual acting antimalarial drugs that are schizontocidal and eliminate mature gametocytes resulting in the blockade of transmission

Phenotypic screening as main source of antimalarial hits

TCAMS: 13,500 hits publicaly available

http://pubchem.ncbi.nlm.nih.gov/

Thousands of chemical starting points for antimalarial lead identification

Francisco-Javier Gamo ${ }^{1}$, Laura M. Sanz ${ }^{1}$, Jaume Vidal ${ }^{1}$, Cristina de Cozara ${ }^{1}$, Emilio Alvarez ${ }^{1}$, Jose-Luis Lavandera ${ }^{1}$ Dana E. Vanderwall ${ }^{2}$, Darren V. S. Green ${ }^{3}$, Vinod Kumar ${ }^{4}$, Samiul Hasan ${ }^{4}$, James R. Brown ${ }^{4}$, Catherine E. Peishoff ${ }^{5}$, Lon R. Cardon ${ }^{6}$ \& Jose F. Garcia-Bustos ${ }^{1}$

Malaria is a devastating infection caused by protozoa of the genus Plasmodium. Drug resistance is widespread, no new chemical class of antimalarials has been introduced into clinical practice since 1996 and there is a recent rise of parasite

$$
\frac{\text { www.heos.com }}{\text { For all HEOS }{ }^{\circledR} \text { users }}
$$ strains with reduced sensitivity to the newest drugs. We screened nearly 2 milion compounds in tlaxosmithk ine'schemica

library for inhibitors of P. falciparum, of which 13,533 were confirmed to inhibit parasite growth by at least 80% at $2 \mu \mathrm{M}$ oncentration. More than 8,000 also showed potent activity against the multidrug resistant strain Dd2. Most (82%) compounds originate from internal company projects and are new to the malaria community. Analyses using historic assay data suggest several novel mechanisms of antimalarial action, such as inhibition of protein kinases and host-pathogen interaction related targets. Chemical structures and associated data are hereby made public to encourage additional drug lead identification efforts and further research into this disease.

Sharing of TCAMS across the malaria community

Killing rates determination to prioritize fast acting compounds

48h treated parasites at $10 \times 1 C_{50}$

Parasites viability at $10 \times 1 C_{50}$

- Metabolism is not a good surrogate of parasite viability -Growth stopped but viable parasite and viceversa

Transmission blocking assays to prioritize gametocytocidal compounds

P. falciparum murine malaria model

Working with the human pathogen

Strategy is being successful

Fast acting and TrB potential embedded in the same molecule

- PFL0590c locus encodes type ATPase4)
- First described by Novartis as causing resistance to spiroindolone NITD 609
- Additional chemotypes displaying cross-resistance with PfATP4-R mutants

spiroindolone

Science. 2010 September 3; 329(5996): 11751180.

- Linkable analogs designed for proteomic approach
- Pull down experiments ongoing
- Genomic approach selected resistant mutants for both series
- Sequencing has revealed mutations in PFL0590c locus

Multiple chemotypes sharing same mechanism of resistance

[^0]: 20141114_NegIDiseases_SP

