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REVIEW ARTICLE
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Research on change detection techniques has long been an active topic and many
techniques have been developed. In reality, change detection is a comprehensive
procedure that requires careful consideration of many factors such as the nature of
change detection problems, image preprocessing, selection of suitable variables and
algorithms. This paper briefly overviews the major steps involved in a change detec-
tion, summarises major change detection methods, discusses the impacts of scales and
complexity of study areas on the selection of remote-sensing data and change detection
algorithms and finally discusses the needs of developing new change detection meth-
ods. As high spatial resolution images are easily available in the past decade, texture-
and object-based methods become valuable to improve change detection performance.
At national and global scales, coarse spatial resolution satellite images such as MODIS
become important data sources for rapidly detecting land-cover change, but results
have high uncertainty. More research is needed to develop new techniques to solve the
mixed pixel problem. At regional scale, it is necessary to explore integration of multi-
sensor data and multiple algorithms to improve change detection results.

Keywords: change detection; remote sensing; land use and land cover

1. Introduction

Land use and land cover (LULC) change has been regarded as an important factor
influencing climate change and environmental conditions (Grimm et al. 2008, Jones
et al. 2008), and has a close relationship to population migration and economic conditions
(DeFries 2013). As a fundamental data source for many studies, timely updating of LULC
data sets is necessary. Remote sensing has become a major data source for mapping and
monitoring LULC dynamic change over time (Xian et al. 2009, Hansen and Loveland
2012), because it can capture land surface information at the time when satellites pass
through. In the past four decades, research on LULC change detection has obtained great
attention and a large number of techniques have been developed (see the review papers by
Singh 1989, Lu et al. 2004b, Bhagat 2012, Hussain et al. 2013). To date, change detection
is still an active research topic (Demir et al. 2012, 2013, Volpi et al. 2013), and new
techniques continue to be developed to effectively employ different features inherent in
remote sensing and ancillary data for improving change detection results (Ardila Lopez
et al. 2012, Chen et al. 2013, Hussain et al. 2013, Kim et al. 2013).

In theory, different LULC types have their own spectral signatures, and change in
LULC types will result in change of their spectral signatures. Thus, LULC change can be
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detected through comparing the spectral signatures of two points in time using a suitable
algorithm (Lu et al. 2004b). However, in practice, many factors, such as the complexity of
landscapes and topographic conditions under investigation, the characteristics of selected
remote sensing data, quality of image registration and of atmospheric correction or
normalisation between multitemporal images, the selected change detection methods
and the analyst’s skill and experience can affect change detection results (Lu et al.
2004b, Jensen 2005). Therefore, change detection is a comprehensive procedure that
requires consideration of all these aspects. When the user’s needs are clearly described
and the study area is selected, selection of variables and corresponding change detection
algorithm becomes critical.

In practice, the right choice for implementing change detection in a specific study area
is still poorly understood, mainly due to lack of guidelines to design an optimal change
detection procedure. It is necessary to better understand which technique is suitable for
which kinds of remotely sensed data at different characteristics of the study areas under
investigation. Although previous literatures (e.g., Singh 1989, Lu et al. 2004b, Hussain
et al. 2013) have reviewed many change detection techniques, they are more focused on
the description of specific techniques. Some important topics such as concerns in major
steps involved in a change detection procedure, selection of potential variables and
impacts of scale issues have not been fully discussed. This paper will (1) offer a general
description of a change detection procedure so that readers can clearly understand major
concerns in each step; (2) describe different change categories and overview potential
variables for change detection; (3) discuss the impacts of different scales and complexity
of a study area on the selection of remote sensing variables and corresponding algorithms,
which they have not been fully discussed before; and (4) finally, briefly discuss the needs
to develop new methods to effectively employ different remote sensing features.

2. A general procedure for conducting a change detection analysis

The major steps and corresponding contents for conducting an LULC change detection
analysis is summarised in Table 1. A brief description of each step is provided in the
following sub-sections.

2.1 Description of change detection problems

For a change detection study, it is necessary to clearly define the research problems that
need solving, the objectives, location and extent of the study area (Jensen 2005). All the
following steps such as selection of remotely sensed data and corresponding algorithms
are designed according to the nature of change detection problems. Important issues
include definition of a change detection system, extent and complexity of the study
area, user’s requirements in change detection results, time periods and availability of
remote sensing and ancillary data. After clearly understanding user’s needs and research
problems, a change detection procedure can be designed. The selection of suitable
variables from remote sensing data and corresponding change detection algorithms is
especially critical in a change detection procedure and they are still active research topics.

2.2 Selection of suitable remotely sensed data

Remote sensing data have different features in radiometric, spectral, spatial and temporal
resolutions and polarisation options (for radar data). Understanding the strengths and
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weaknesses of different types of sensor data is prerequisite for selecting suitable data sets
for a specific study (Barnsley 1999, Lefsky and Cohen 2003). User’s needs, complexity of
landscapes and the areal extent of a study area are important concerns for the selection of
remotely sensed data (Lu et al. 2004b, Lu and Weng 2007). High spatial resolution images
such as IKONOS, QuickBird and Worldview have recently become important data
sources for change detection analysis at a local scale (Lu et al. 2010). Medium spatial
resolution images, especially Landsat images due to their long history of data availability
and suitable spectral and spatial resolutions, have become a common data source for
regional LULC change detection (Xian et al. 2009, Hansen and Loveland 2012). At a
continental or global scale, coarse spatial resolution data such as AVHRR, MODIS and
SPOT VGT (VEGETATION) may be used (Hansen and DeFries 2004, Bergen et al. 2005,
Lunetta et al. 2006, Hansen et al. 2008a, b, Bontemps et al. 2012), but present challenges
in developing suitable techniques to extract changed features from coarse spatial resolu-
tion data. Since a radar can capture land surface information without impacts of atmo-
spheric conditions, its data has become another important source for LULC change
detection (Grey et al. 2003, Wang et al. 2008, Whittle et al. 2012, Brisco et al. 2013,
Nascimento et al. 2013), especially when optical sensor data are not available due to the
cloud cover problem. Ideally, change detection is conducted with multitemporal images
from the same sensor. Yet, the same sensor data may not be obtainable due to the
constraints of data availability. In these cases, data from different optical and/or radar

Table 1. Major steps and corresponding contents for conducting change detection analysis.

Major steps Main contents

Describe the nature of change
detection problems

Research problems and objectives

Geographic location and size
Time period
Change detection system
Accuracy requirement

Select suitable remotely sensed data The characteristics of remote sensing data
Consideration of atmospheric & environmental conditions
Characteristics of the landscape under investigation

Conduct image preprocessing Geometric rectification/registration
Radiometric and atmospheric correction
Topographic correction if needed

Select suitable variables Different features inherent remote sensing data
Per-pixel-based variables from image transform or vegetation
index

Sub-pixel-based variables from unmixing processing such as
spectral mixture analysis

Spatial features such as textural images
Thematic variables from image segmentation or classification

Select suitable change detection
algorithms

The characteristics of change detection algorithms

Selection of suitable algorithms
Comparison of different algorithms if needed

Evaluate change detection results Determination of sampling strategy and sample size
Collection of reference data
Accuracy assessment

International Journal of Image and Data Fusion 15



sensors are the only solution (Reiche et al. 2013). Using multi-sensor images which are
acquired at different dates is a challenge in terms of designing a suitable procedure.
Caution should be taken to reduce the impact of external factors, such as different
atmospheric conditions, states of soil moisture and vegetation phenology between differ-
ent image acquisition dates, on the change detection analysis (Jensen 2005). Cloud cover
is another problem that needs to be taken care of before conducting change detection
analysis (Lu et al. 2012, Eckardt et al. 2013).

2.3 Image preprocessing

Image preprocessing, including geometric rectification or image-to-image registration and
atmospheric calibration, is required before conducting a change detection analysis.
Accurate geometric registration between multitemporal images is critical because mis-
registration may result in largely spurious results of change detection (Dai and Khorram
1998, Verbyla and Boles 2000, Stow and Chen 2002, Shi and Hao 2013). The atmo-
spheric conditions at different acquisition dates influence spectral signatures for the same
invariant objects. Therefore, conversion from raw data to surface reflectance using a
proper atmospheric calibration method is needed (Song et al. 2001, Du et al. 2002,
Vicente-Serrano et al. 2008, Chander et al. 2009). Many algorithms from relative calibra-
tion and dark-object subtraction to complex model-based calibration approaches (e.g., 6S
– second simulation of the satellite signal in the solar spectrum) have been developed for
radiometric and atmospheric correction (Vermote et al. 1997, Song et al. 2001, Chander
et al. 2009). The dark-object subtraction approach is commonly used in practice because it
is strictly an image-based procedure and corrected for the effects caused by sun zenith
angle, solar radiance, and atmospheric scattering (Chavez 1996, Lu et al. 2002). In
mountainous study areas, topographic correction is also necessary to reduce the impact
of topography on reflectance. The topographic correction models, such as Minnaert, and
statistical–empirical approaches may be used (Riano et al. 2003, Lu et al. 2008b).

2.4 Selection of suitable remote sensing variables

Selection of suitable remote sensing variables to detect changes is fundamental. These
variables could be spectral bands and derived variables using different approaches, such as
vegetation indices, transformed images, textures, segments, sub-pixel features and classi-
fication results. Section 4 discusses the potential variables that may be used for change
detection analysis.

2.5 Selection of a change detection algorithm

Many change detection techniques have been reviewed in the literature (e.g., Singh 1989,
Coppin and Bauer 1996, Coppin et al. 2004, Lu et al. 2004b, Jensen 2005, Kennedy et al.
2009, Bhagat 2012, Hussain et al. 2013), but which method should be selected for a
specific study area and data set is not clear. Depending on the analyst’s knowledge, the
skills in handling remote sensing data and characteristics of the study areas, several
methods are selected for a comparative analysis to identify the best result (Ridd and Liu
1998, Mas 1999, Hayes and Sader 2001, Lu et al. 2005, Bucha and Stibig 2008,
Berberoglu and Akin 2009). A brief overview of change detection techniques is provided
in Section 5.
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2.6 Evaluation of change detection results

The implementation of accuracy assessment for change detection results is a challenge
because of the difficulty in collecting reference data at multitemporal periods (Morisette
and Khorram 2000, Foody 2010, Olofsson et al. 2013). If reference data are available, the
traditional error matrix method can be used and this method has been fully described in
previous literature (e.g., Foody 2002, Van Oort 2007, Congalton and Green 2008). Biging
et al. (1999) provided a detailed description of the issues affecting accuracy assessment of
LULC change detection. They discussed the factors of a remote sensing processing
system that affected accuracy assessment, presented a sampling design to estimate the
elements of the error matrix efficiently, illustrated possible applications and gave recom-
mendations for accuracy assessment of change detection. Interested readers should look at
the monograph ‘Accuracy assessment of remotely sensed-derived change detection’ by
Biging et al. (1999). Different change categories, such as binary change and non-change
and detailed ‘from-to’ change trajectories, required different accuracy assessment meth-
ods, including sampling technique (Foody 2010), especially in a large area (Herold et al.
2008). In order to improve change detection results, uncertainty analysis is valuable to
identify major factors influencing change detection errors to optimise the change detection
procedure; however, this kind of research has not been obtained much attention yet.

3. A brief overview of change categories

Change detection is generally grouped into two categories – the change between classes
and the change within classes. The former is a conversion of a land cover from one
category to a completely different category such as deforestation or urbanisation; and the
latter is a modification of the condition of a land cover within the same category, such as
forest degradation due to selective logging (Lu et al. 2004b). A good change detection
study should provide information relevant to (1) changed area and rate, (2) spatial
distribution of changed types, (3) change trajectories of LULC types, (4) changes in
certain specific attributes such as biomass and leaf area index (LAI) and (5) accuracy
assessment of change detection results (Lu et al. 2004b). In addition to the conversion
from one type to another, more research is shifted to examining the disturbance due to
fires and insects, or the seasonal change due to phenology (Wulder and Franklin 2007,
Verbesselt et al. 2010a, b). Before implementing a change detection analysis, it is
important to clearly define the kinds of changes to be detected in a given study area.
Here, we group the change categories into four types: binary change/non-change, detailed
‘from-to’ change trajectories, specific change type and continuous variable change, and
they are briefly discussed in the following.

3.1 Binary change and non-change category

Change and non-change detection is usually the initial stage for understanding the amount
and spatial patterns of changed areas in a study area within a change detection period.
This information is required to be able to design a change detection procedure, including
identification of suitable remote sensing variables and change detection algorithms.
Threshold-based methods are commonly used to distinguish changed areas from non--
changed areas (Lu et al. 2005). However, change and non-change detection cannot
provide much meaningful information unless a clear definition for detecting the kind of
change is provided.
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3.2 Detailed ‘from-to’ change trajectories

Many change detection studies require detailed ‘from-to’ change trajectory information. A
post-classification comparison approach is commonly used for examining the detailed
change trajectories (Lu et al. 2004b, 2012). Before conducting the change detection
analysis, it is critical to clearly define an LULC classification system and the required
change detection system. Different classification systems will considerably affect the
classification accuracy, thus influencing change detection accuracy. It is important to
highlight interesting and meaningful change trajectories, and to exclude spurious change
due to the misregistration. For instance, two six-class (i.e., forest, savanna, other-vegeta-
tion, agropasture, impervious surface area, and water) classification images can produce
six unchanged types and 30 change trajectories. However, some change trajectories, such
as those from impervious surface areas or agropasture to mature forest or to savanna
within a few years, are not true. Figure 1 provides an example for highlighting forest
deforestation (from forest to agropasture or other-vegetation), savanna deforestation (from
savanna to agropasture or other-vegetation), dynamic change between other-vegetation
and agropasture and impervious surface expansion (from forest, savanna, other-vegetation
or agropasture to impervious surface areas) in the Brazilian Amazon (details were
provided in Lu et al. 2013a).

3.3 Specific change types

Not all studies require detailed ‘from-to’ change trajectory information. In these cases,
users want to know specific change types, such as deforestation, urbanisation, agricultural
expansion and certain disaster-induced changes (e.g., flooding, earthquake and fire).
Deforestation has been regarded as a major factor resulting in carbon emission into the
atmosphere (Harris et al. 2012, Zarin 2012). Brazil has developed two systems, i.e.,
PRODES – Program for the Estimation of Deforestation in the Brazilian Amazon
(http://www.obt.inpe.br/prodes/) and DETER – Real Time Deforestation Monitoring
System (http://www.obt.inpe.br/deter/) to monitor annual deforestation using Landsat
and MODIS data, respectively (Hansen et al. 2008b, Shimabukuro et al. 2013).
Figure 2 provides examples illustrating urbanisation in an urban–rural landscape in
Mato Grosso State using multitemporal QuickBird images (Lu et al. 2010) and deforesta-
tion in Machadinho d’Oeste in north-eastern Rondônia State using multitemporal Landsat
images (Lu et al. 2004a). In this case, one just needs to develop a specific method to
extract the land-cover type (e.g., impervious surface area or forest) without a complete
LULC classification scheme.

3.4 Continuous variable change

LULC modification, especially forest disturbance, can be caused by natural (insect/
disease, drought and fire) and anthropogenic factors (e.g., selective logging) (Wulder
and Franklin 2007, Frolking et al. 2009, Spruce et al. 2011, Masek and Healey 2013,
Souza 2013). This kind of change detection has special requirements, that is, the selected
remote sensing variables are sensitive to small quantitative changes in vegetation struc-
ture, and the time period is relatively short in order to detect the disturbance. Since
Landsat data are available for public access at no cost, time series of Landsat images have
been extensively applied to examine forest disturbance (Huang et al. 2009, 2010,
Kuemmerle et al. 2009, Cohen et al. 2010, Kennedy et al. 2010, Wulder et al. 2012,
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Potapov et al. 2013). Meanwhile, time series MODIS data provide a new opportunity to
examine forest disturbance at regional and national scales (Jin et al. 2005b, Verbesselt
et al. 2010b). The key is to develop suitable techniques to detect the small changes in the
mixed pixels due to its coarse spatial resolution. Depending on the factors causing forest
disturbance, selection of suitable remote sensing variables and techniques are especially
important for detecting the disturbance at different degrees.

4. Selection of suitable variables for conducting change detection analysis

The spectral, spatial, temporal, and radiometric resolutions of remotely sensed data have a
significant impact on the success of a change detection project. When selecting remote
sensing data for change detection applications, it would be ideal to use the same sensor
with the same radiometric and spatial resolution at the same time of the year in order to

Figure 1. An example showing detailed LULC ‘from-to’ change trajectories between 1999 and
2008 in Lucas do Rio Verde, Mato Grosso State, Brazil.
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eliminate the effects of external sources such as sun angle and phenological differences.
The considerations of remote sensing systems and environmental characteristics before
implementing a change detection study were detailed in previous literature (see Coppin
and Bauer 1996, Biging et al. 1999, Jensen 2005). In reality, selection of the same sensor
data in a specific study is difficult, especially in moist tropical regions due to cloud cover
problem. For change detection over long-term periods, satellite images may be not
available, thus, multi-source data consisting of different satellite images, airborne photo-
graphs and existing thematic maps may be used (Petit and Lambin 2001, Ichii et al. 2003,
Walter 2004, Li 2010, Groen et al. 2012, Tian et al. 2013). Today’s availability of
different remote sensing data provides more choices for data collection for a specific
study area (Reiche et al. 2013), considering the user’s needs, extent and complexity of a
study area.

The unique features (e.g., radiometric, spectral, spatial and temporal resolutions for
optical sensor data and polarisation options for radar data) of remote sensing data make it
the primary data source for LULC change detection at various scales (Kennedy et al.
2009, Wulder et al. 2012). Temporal resolution is an important concern for collecting
multitemporal remote sensing data. Relatively low temporal resolution (e.g., revisit inter-
val of 26 days for Landsat MSS in the 1970s, and of 16 days for Landsat TM in the
1980s) makes collection of cloud-free images difficult. Daily availability of some remote
sensing data such as RapidEye and MODIS and availability of multi-sensor data provide
new opportunities to conduct LULC change detection, especially for modification detec-
tion. Improvement in radiometric resolution, from 6 bits in Landsat MSS, and 8 bits in

F88-F94-NF98

Deforestation in Rondonia

a b

F88-NF94-NF98

Non-forested area

Unchanged forest

Figure 2. Examples showing (a) urbanisation in Lucas do Rio Verde, Mato Grosso State using
QuickBird images in 2004, 2007 and 2008; and (b) deforestation in Machadinho d’Oeste in north-
eastern Rondônia State using Landsat images in 1988, 1994 and 1998.
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Landsat TM to 12 bits in Landsat 8 LDCM (Landsat Data Continuity Mission) may
provide better separability for different LULC types. Spectral signature is a critical feature
for LULC classification. Higher spectral resolution data, such as hyperspectral versus
multi-spectral versus panchromatic data, have the potential to better separate different
LULC types. In reality, majority of available sensor data are multi-spectral. Spatial
resolution determines the ability to distinguish the smallest objects in remote sensing
data. At present, spatial resolution has a wide range, from sub-meter (e.g., QuickBird,
Worldview), to medium (e.g., 30 m for Landsat images) and coarse spatial resolution
images (e.g., MODIS with 250 m to 1000 m). Since radar systems can collect data with
different polarisation options without impacts of weather conditions (Kasischke et al.
1997), use of radar data becomes important for the study areas where optical sensor data
limits usability due to cloud cover problems. However, the incapability of vegetation
classification using radar data (Li et al. 2012) may be a constraint for successful change
detection, especially for detecting vegetation modification due to human or nature-
induced factors. The followings discuss each category of the potential variables.

4.1 Direct use of remote sensing spectral features

Spectral responses are the most common variables for change detection. Much of previous
research has indicated that the visible red band, with a wavelength of 620–750 nm, can
provide better performance in detecting binary change/non-change categories than other
spectral bands due to the highly different spectral signatures between vegetation and other
land covers (Chavez and Mackinnon 1994, Lu et al. 2005). Vegetation indices or
transformed images may further improve change detection performance due to the cap-
ability of enhancing features of interest (Lu et al. 2005). Because vegetation indices can
reduce the variation caused by canopy geometry, soil background, sun view angles and
atmospheric conditions, many vegetation indices have thus been developed (Bannari et al.
1995, Eastwood et al. 1997, McDonald et al. 1998) and applied to LULC change
detection, especially vegetation change. They have different merits because vegetation
indices can enhance some specific vegetation information (Bayarjargal et al. 2006). Image
transform can concentrate major image information on the first few components, and
using these derived components, it may produce better change detection results than using
individual bands (Lu et al. 2005). Principal component analysis (PCA), tasselled cap and
minimum noise fraction (Jensen 2005) are among the most commonly used image trans-
form methods. The wetness component from tasselled cap transform has proven to be
valuable for detecting forest disturbance (Healey et al. 2005, Jin et al. 2005a). The
spectral features are especially important for medium and coarse spatial resolution images
for conducting change detection, but it is critical to identify proper variables that can
better represent the spectral difference between the interested features and others. In
practice, researchers examine different variables and compare their results in order to
find the best one for a specific study (Lu et al. 2005).

LULC change detection is usually conducted with the same sensor data. For many
study areas, especially those in moist tropical regions, collection of the same sensor data
at different dates may be difficult because of cloud cover and low revisit time of the
satellite. In this case, the use of different sensor data for conducting change detection is
required (Lu et al. 2008a, Qin et al. 2013). Although different sensor data (Lefsky and
Cohen 2003) provide new opportunities for integrating multi-sensor data in change
detection analysis, the differences in spectral, spatial, radiometric and temporal resolutions
between different sensor data make change detection using traditional methods difficult.
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New methods are needed to conduct change detection based on multiple sensor data. One
possible method uses data fusion (Pohl and van Genderen 1998, Lu et al. 2008a, Zeng
et al. 2010, Zhang 2010, Hussain et al. 2013, Reiche et al. 2013). The key is to select
suitable data fusion techniques to highlight the changed areas. Lu et al. (2008a) had used
Landsat TM and SPOT HRG to examine vegetation change in the Brazilian Amazon
based on PCA fusion and image differencing for identifying vegetation degradation/
restoration. Data fusion of multi-resolution or multi-sensor images may enhance the
spectral information in addition to improving spatial resolution in the newly fused
image (Du et al. 2013, Reiche et al. 2013).

4.2 Use of spatial information

As high spatial resolution images, such as QuickBird and Worldview, are easily available
since the early 2000s, much research has shifted to use of high spatial resolution images
for accurate LULC change detection, especially in urban landscapes (Lu et al. 2010). This
provides a new platform to examine small changes in an urban landscape or to analyse
forest disturbance due to selective logging or other disasters. However, directly using
spectral signatures generates relatively poor results due to high spectral variation with the
same land cover and different shade sizes due to sun elevation angles and azimuths
between image acquisition dates, as illustrated in Figure 3. The rich spatial information
inherent in high spatial resolution images is an important feature for LULC change
detection. Textural images calculated using the GLCM-based methods have been proven
to be valuable for change detection (Im et al. 2008a, Lam 2008, Lu et al. 2010, Wu et al.
2010). Many texture measures such as variance, homogeneity, contrast, dissimilarity,
entropy, second moment, Markov random field and others (Haralick et al. 1973,
Marceau et al. 1990, Chen et al. 2004, Seetharamana and Palanivel 2013) are used for
LULC classification (Li et al. 2012), but not extensively for change detection yet. The
major reason may be the difficulty in identifying the optimal textural images and the
reduced separability of some LULC types (Li et al. 2012). The performance of a textural
image varies with the complexity of a study area under investigation, the texture measure
used, the size of moving window and the image itself (Chen et al. 2004). Recently, object-
based image analysis has been widely explored using high spatial resolution images (Im
et al. 2008b, Blaschke 2010, Chen et al. 2012a). The key is to identify optimal parameters
for developing good-quality segmentation imagery suitable for a specific study.

4.3 Use of sub-pixel information

When medium and coarse spatial resolution images are used in urban landscapes or in a
complex landscape covering a large study area, mixed pixels are a major problem
affecting the change detection because changed areas are small and scattered in different
locations (Lu and Weng 2004, Lu et al. 2008a). Direct use of these images at per-pixel
level cannot effectively detect the changes or may generate high uncertain results. Sub-
pixel information may provide a new platform for detecting modification, especially
vegetation disturbance because of the ability to reflect forest stand structure (Lu et al.
2003, Souza 2013). Spectral mixture analysis is one of the common methods to produce
fractional images for change detection (Haertel et al. 2004, Lu et al. 2011b, c). The key is
to identify suitable endmembers for unmixing multi-spectral images into fractional images
(Lu et al. 2003). In reality, the application of sub-pixel information for change detection is
still very limited. The major problem is the difficulty in generating fractional land-cover
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data from medium or coarse spatial resolution, and the lack of suitable algorithm or
method to conduct change detection based on fractional images. To date, there are no
suitable algorithms to effectively use multitemporal sub-pixel images to produce ‘from-to’
change trajectories.

4.4 Use of thematic information

Since change detection based on spectral response (e.g., spectral bands and derived
products) or textures is influenced by external factors such as different atmospheric
conditions, soil moisture conditions, topography, sun elevation angle and vegetation/
crop phenology (Jensen 2005), direct use of multitemporal spectral responses does not
lead to satisfactory change detection results. In order to avoid these impacts, one solution
is to conduct image classification for each date of imagery separately before conducting
change detection. Many classification algorithms are available, as summarised by Lu and
Weng (2007). The key is to develop accurate classification result for each image by
properly designing a classification procedure (Lu et al. 2012). The classified images are
then used to examine LULC change trajectories using the post-classification comparison
approach (Lu et al. 2012). Depending on the needs of change detection results, design of a
suitable LULC classification system is important.

b1

A

b2

2004 Quickbird

a1 a2

2008 Quickbird
band 432 as red,
green, and blue

band 432 as red,
green, and blue

20082007

Figure 3. QuickBird false colour compositions showing the high spectral variation in impervious
surface areas and shadow (a1 and a2) and displacement problems between different image acquisi-
tion dates (b1 and b2).
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4.5 Development of biophysical attributes

Majority of change detection techniques are based on the direct use of remote sensing
data. It may be difficult to detect some specific changes, such as urban expansion due to
the fact that changed areas cover less than one pixel (Lu et al. 2011b), and forest
degradation due to the small difference in spectral response caused by complex forest
structures (Lu et al. 2013b). Some biophysical attributes, such as impervious surface area
in urban landscapes and LAI in forest ecosystems, can be derived from remotely sensed
data. These variables may lead to better results for specific change detection purposes. For
example, much research has gone into the examination of mapping impervious surface
distribution from multi-spectral signatures using spectral mixture analysis (Wu and
Murray 2003, Lu et al. 2011b). The analysis of multitemporal impervious surface data
helps examine urban expansion (Lu et al. 2011b, Michishita et al. 2012). In another study
in a moist tropical region, Lu and his colleagues found that entropy (calculated from
probability distribution of tree heights within a sample plot) reflecting forest stand
structure can be better used to separate different successional stages (Lu 2005). The use
of entropy images may better reflect the change of forest stand structure due to distur-
bance, resulting in more accurate forest degradation or regrowth information. When using
biophysical attributes for change detection, the key is to identify a suitable parameter that
can better reflect the change of a specific LULC type, meanwhile, this parameter can be
accurately extracted from remotely sensed data.

4.6 Use of multi-source data

Different variables from remote sensing or ancillary data (e.g., previously developed
thematic maps) may be used in a change detection procedure (Petit and Lambin 2001, Li
2010). In particular, satellite images are not available before the 1970s, while aerial
photographs and survey maps may be available in a longer history for some study areas.
Cautions should be taken for quality evaluation of each selected data set. Different source
of data have various format, quality and spatial resolution. Improper use of multi-source
data may produce a large error due to the data quality problem among the data sources.
Therefore, data preprocessing, including geometric rectification, conversion of data formats
and resampling of data sets to have the same cell size, will be necessary before conducting
change detection. Geographic information system (GIS) techniques will be valuable for
integrating these data in a change detection procedure (Li 2010, Hussain et al. 2013).

5. A brief overview of change detection methods

Many change detection techniques are summarised in the literature (e.g., Singh 1989, Lu
et al. 2004b, Bhagat 2012, Hussain et al. 2013). Lu et al. (2004b) summarised over 30
techniques and grouped them into seven categories: algebra, transformation, classification,
advanced models, GIS approaches, visual analysis and other approaches. Bhagat (2012)
summarised 29 techniques which were grouped into eight categories: spectral classifica-
tion, multi-date radiometric change, support vector analysis approach, hybrid approach,
artificial neural network approach, fusion approach, object comparison approach and
triangle model approach. Hussain et al. (2013) summarised over 20 approaches which
were grouped into 10 sub-classes, and provided a brief description of 15 per-pixel based
change detection techniques and three object-based techniques. Advanced non-parametric
algorithm such as neural network and support vector machine may provide better
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performance for change detection (Nemmour and Chibani 2006a, b, Huang et al. 2008,
Hussain et al. 2013). More research is needed to combine different change detection
techniques to meet the specific purpose. Some literature has explored the combination or
fusion of different change detection methods for improving performance (Du et al. 2012,
2013). In this section, detailed descriptions of individual change detection techniques are
not provided because previous publications have done. According to the algorithms and
variables used, the techniques are grouped into six categories: per-pixel thresholding, per-
pixel classification, sub-pixel, object-oriented, hybrid and indirect methods.

5.1 Per-pixel thresholding-based methods

Many change detection techniques, such as image differencing, vegetation index differen-
cing, PCA and regression analysis (Im et al. 2007), are used for detecting change and non-
change categories using thresholding methods based on the spectral responses (spectral
bands, or derived images using vegetation indices and transform algorithms). In these
methods, the critical steps are identifying suitable bands that can effectively reflect the
change of interesting types, and determining suitable thresholds in both tails of the
histogram representing the changed areas for separation of change and non-change
categories (Lu et al. 2005, Im et al. 2008a, 2009). As described in the above section,
different variables can be used, but it is valuable to identify one that best reflects the
interest of the features, for example, drought-induced tree mortality or selective logging-
induced biomass change.

Selection of thresholds can be based on (1) interactive procedure or manual trial-and-
error procedure – an analyst interactively adjusts the thresholds and evaluates the resulting
image until satisfied; and (2) statistical measures – selection of a suitable standard
deviation from the mean (Lu et al. 2005). Im et al. (2009) further explored the methods
to determine optimal thresholds using a moving threshold window approach. In practice,
the determination of thresholds is highly subjective and scene-dependent, depending on
the analyst’s skills and familiarity with the study area (Lu et al. 2004b, 2005). Different
external factors, such as phenology and soil moistures, can affect change detection results,
especially those related to vegetation and agricultural land change. Although the per-pixel
thresholding-based methods only provide the spatial patterns and magnitude of changed
results without detailed LULC change trajectory information, they indeed provide valu-
able information for designing a proper procedure for further examining the detailed
change trajectories.

5.2 Per-pixel classification-based methods

The per-pixel classification-based change detection methods may be the most commonly
used ones in practice (Hussain et al. 2013) because they can avoid the impacts of external
factors on change detection results (Lu et al. 2012). However, these methods are criticised
for their incapability of solving mixed pixel problem in medium or coarse spatial resolu-
tion images and high spectral variation within the same land covers in high spatial
resolution images. The quality of ‘from-to’ change detection results is mainly dependent
on the classification accuracy for each date being analysed (Jensen 2005). That is, the
classification errors from the individual-date images will affect the final change detection
accuracy. Therefore, the development of accurate LULC classification becomes critical
(Lu and Weng 2007). However, accurate LULC classification from historical remote
sensing data is a challenging task because of lack of training samples and the complex
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landscapes (Lu et al. 2012). In particular, the per-pixel classification-based method is
difficult to detect LULC modification, such as forest disturbance.

5.3 Object-based methods

In order to effectively employ rich spatial information-inherent high spatial resolution
images, object-based change detection methods have recently gained increasing attention
(Desclée et al. 2006, Im et al. 2008b, Chen et al. 2012a, Hussain et al. 2013). In general,
the object-based change detection methods can be conducted in three ways: (1) direct
comparison of segmentation images at different dates; (2) comparison of classified
objects; and (3) image segmentation and classification based on stacked multitemporal
images. Object-based methods can reduce the spectral variation within the same land
covers. Therefore, these methods are more suitable for high spatial resolution images than
for medium or coarse spatial resolution images (Lu et al. 2010). The key is to identify
optimal parameters (e.g., minimum value distance, variance factor, minimum size of
pixels in a segment) for producing suitable segmentation images.

5.4 Sub-pixel based methods

Since mixed pixels in medium and coarse spatial resolution images have been regarded as
an important factor influencing the LULC change detection results (Lu et al. 2011c), sub-
pixel-based methods have been proposed to solve this problem (Adams et al. 1995,
Haertel et al. 2004, Zanotta and Haertel 2012). Different sub-pixel methods, such as
fuzzy classification and spectral mixture analysis, may be used. A common method is to
decompose the multi-spectral image into fractional images having biophysical meanings.
The thresholding-based methods can be used to examine the changes in the fraction
values. This method is valuable for some specific change detection studies such as forest
disturbance (Lu et al. 2013b, Souza 2013) and urban expansion (Yang et al. 2003, Lu
et al. 2011c, Michishita et al. 2012). Although sub-pixel-based methods are especially
valuable when coarse spatial resolution images, such as MODIS, are used at national and
global scales, there is still a lack of suitable sub-pixel based algorithms to detect detailed
‘from-to’ trajectories.

5.5 Hybrid methods

Previous studies mainly examined LULC change/non-change or detailed ‘from-to’ change
trajectories using individual methods, but different methods have their own merits, thus a
combination of them may provide better results or more detailed results than individual
methods (Im and Jensen 2005, Liu et al. 2008, Chen et al. 2012b, Du et al. 2012, Cassidy
et al. 2013). In general, hybrid methods may be conducted in two ways: (1) combination
of different methods into one change detection procedure; and (2) combination of change
detection results from different methods into a new result using certain rules or fusion
methods such as feature or decision-level fusion. For example, Lu et al. (2008a) had
explored the combination of binary change/non-change detection and a post-classification
comparison approach to produce vegetation degradation or restoration in the Brazilian
Amazon based on Landsat TM and SPOT data. They used PCA to integrate TM and
SPOT panchromatic data, and then used image differencing method based on the fused
image and original TM image to produce vegetation growth or degradation. A rule-based
method was used to classify the Landsat TM and SPOT multi-spectral images into
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thematic images with three coarse land-cover classes – forest, non-forest vegetation, and
non-vegetation lands, and then the post-classification comparison approach was used to
detect major LULC change. This hybrid method can produce vegetation gain and loss, in
addition to the traditional LULC conversion.

Data fusion-based change detection methods are categorised in three groups: (1) use of
different sensor data at various dates such as Landsat at date 1 and panchromatic or radar
data at date 2 (Lu et al. 2008a), (2) use of different sensor/resolution images in the same
year to improve the LULC classification performance (Gungor and Akar 2010), and (3)
use of remote sensing and GIS data (Li 2010). Different sensor data may result in the
possibility to combine them in a change detection procedure (Zeng et al. 2010, Du et al.
2013). Different source data, including different remote sensing data and previous the-
matic or survey data, may be integrated too (Li 2010), especially when remote sensing
data are not available in a study area because of the cloud cover problem or a long-term
time period. Zeng et al. (2010) overviewed remote sensing image fusion methods and Li
(2010) overviewed remote sensing and GIS data fusion for LULC change detection. Du
et al. (2013) compared the change detection results based on pan-sharpened images and
decision-level fusion and indicated the advantage of using fusion techniques in improving
change detection performance.

5.6 Indirect methods

The complexity of landscapes and spectral confusion amongst different LULC types lead
to poor results based on direct use of remote sensing features for change detection.
Indirect methods identify some biophysical attributes that can effectively reflect the
LULC change. These attributes can be derived from remote sensing data through model-
ling. Common attributes are, for example, impervious surface in urban landscapes and
LAI in forest ecosystems (Lu et al. 2011b, 2013b). The key is to develop accurate
biophysical attributes from remote sensing data while the attribute is suitable for use as
a variable for change detection analysis. Indirect methods could be valuable for global
LULC change detection using coarse spatial resolution images, especially for rapidly
updating some specific change categories, such as deforestation and urbanisation. Another
important application may be the detection of forest disturbance caused by natural or
anthropogenic factors based on analysis of vegetation structure change such as LAI,
biomass, or greenness abundance. However, cautions should be taken to ensure that the
uncertainty or error of forest attribute estimates is sufficiently less than the change amount
due to forest disturbance.

6. Consideration of landscape complexity and scales in change detection analysis

The extent and complexity of a study area is an important consideration for designing a
change detection procedure for a specific study. The extent of a study area (local, regional
and global scales) will affect the selection of remote sensing data, thus further affecting
the application of a change detection algorithm. Different complexity of a landscape under
investigation, such as forest-dominated or urban-dominated ecosystems, requires specific
consideration for the use of remote sensing data and change detection algorithms.
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6.1 Consideration of landscape complexity

Different ecosystems, such as vegetation, urban, agriculture and wetlands have different
characteristics in land cover composition and spatial patterns, influencing the selection of
remote sensing data and change detection techniques. In a vegetation-dominated ecosys-
tem, common change detection applications are deforestation (e.g., conversion from forest
to crop lands or impervious surface area) and regeneration/reforestation (e.g., conversion
from crop lands to vegetation). Because of the significant differences in spectral signatures
between vegetation and non-vegetation types, detection of vegetation conversion is
relatively easy. The difficulty lies in detection of vegetation modification, such as forest
degradation due to selective logging, diseases and drought, and vegetation growth or
restoration, because forest is partially changed in density or vertical stand structure (Lu
et al. 2013b). However, natural and anthropogenic-induced forest disturbances have been
regarded as important factors resulting in high uncertainty in biomass/carbon estimation in
the terrestrial ecosystem (Frolking et al. 2009); it is therefore an urgent task to develop
suitable methods to accurately detect forest disturbance. Spectral feature is an important
concern for the selection of remote sensing data. Change detection techniques should have
the capability to effectively identify the best spectral variables for distinguishing small
spectral difference due to forest disturbance. Vegetation indices and image transform are
common methods to enhance vegetation information. Another important method is to
identify suitable forest attributes, such as fractional greenness or non-photosynthetic
vegetation, which can be developed using spectral mixture analysis (Lu et al. 2003) or
LAI and biomass that can be estimated using empirical models (Lu 2006). Therefore, sub-
pixel-based or indirect-based change detection methods could be a good choice for
detection of forest disturbance.

In an urban-dominated ecosystem, urban expansion generally occurs in urban–rural
frontiers, where the composition of different land-cover types is very complex. Spatial
resolution is an important concern for the selection of remote sensing data (Lu et al.
2011c). Change detection technique should have the ability to handle mixed pixel problem
when medium or coarse spatial resolution images are used. If very high spatial resolution
images such as QuickBird are used, spatial information, such as textures or segments, is
useful in reducing the spectral heterogeneity in an urban landscape (Lu et al. 2010).
Fusion of LiDAR (LIght Detection And Ranging) and high spatial resolution optical
image is another choice in improving urban change detection because of the capability of
LiDAR in providing height information (Rottensteiner et al. 2005). Incorporation of
height information for 3-D change detection is proven to be valuable, especially in
urban landscapes (Chaabouni-Chouayakh et al. 2013). At the regional scale, data fusion
of multi-resolution images, such as Landsat TM and SPOT panchromatic band, is another
option to improve spatial resolution for improvement of change detection spatial patterns.

In agriculture-dominated ecosystem, crop rotation, growing stage and management are
important concerns that significantly affect their spectral signatures. It is important to
decide the change detection contents: crop change or agricultural land change. In the same
location, different seasons or dates could have various crops, thus they have different
spectral signatures. Because of this characteristic, detection of crop change or agricultural
dynamics is very difficult. A combination of crop phenology knowledge and time series
remote sensing data is critical for accurate detection of crop/agricultural change. Another
concern in change detection is the patch size of agricultural lands. In some regions with
dense population such as east China, agricultural lands, forest, residential areas and ponds
are mosaicked into a complex landscape. While in north-east China, the patch size of
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agricultural lands can be very large, reaching a few hundred or thousand hectares. In a
large area, time series MODIS data have become an important data source for examining
agricultural expansion (Galford et al. 2008), but in a relatively small area, high or medium
spatial resolution images are needed to accurately extract the agricultural land spatial
patterns.

Wetlands play an important role in biodiversity, hydrology and climate change. It is
necessary to monitor wetland dynamic change accurately (Baker et al. 2007, Nielsen et al.
2008, Hall et al. 2011), but different seasons, such as dry or rainy seasons, can consider-
ably affect wetland detection results. A clear definition of wetland types is required. Use
of multi-seasonal remote sensing data is valuable for better examining wetland change.
Because radar data have different backscatter coefficients between water and other land
covers, and are sensitive to water contents, use of multitemporal radar data or integration
of optical and radar data is valuable for effectively detecting wetland dynamic change.

6.2 Scale issues

Scale such as local, regional and continental/global is an important concern in the
selection of remote sensing variables and change detection algorithms. At the local
scale, accurate change detection results with very detailed spatial patterns are required,
especially in urban landscapes. The sub-meter spatial resolution satellite images provide
new opportunities to develop change detection results (Zhou et al. 2008, Bruzzone and
Bovolo 2013, Falco et al. 2013, Volpi et al. 2013), but produces new challenges in
methods/techniques to solve such problems as (1) shadows caused by tall objects, (2)
confusion of shadow, dark impervious surface areas, water and wetland, (3) high spectral
variation of the same urban land cover due to different construction materials and colours,
and (4) spectral confusion among impervious surfaces, bare soils and grass/crop residuals
(Lu et al. 2010). Previous research has examined the application of textures and segmen-
tation-based methods to reduce the spectral variation problem, but these methods cannot
solve spectral confusion and shadow problems. Manual editing is valuable for solving the
shadow problem (Lu et al. 2010).

Medium spatial resolution images, such as Landsat, are commonly used for LULC
change detection at a regional scale (Vogelmann et al. 2009, Wang et al. 2009, Huang
et al. 2010, Lu et al. 2011b, Sexton et al. 2013). The relatively low revisit time and
atmospheric conditions (e.g., cloud cover problem) make the collection of the same sensor
data difficult, especially in the moist tropical regions (Asner 2001). Use of different sensor
data is necessary (Wulder et al. 2008). In the past two decades, many kinds of sensor data
with medium spatial resolution became available, providing more choices to select
different sensor data for change detection. However, the difference in spectral and spatial
resolutions in different sensor data requires new techniques to conduct the change
detection (Lu et al. 2008a), especially when optical and radar data are used together for
change detection. Data fusion techniques at different levels, such as pixel, feature and
decision, can be used to integrate different remote sensing data or combine change
detection results from different algorithms to improve change detection performance
(Zeng et al. 2010, Zhang 2010, Du et al. 2012, 2013, Reiche et al. 2013).

At the national scale, Landsat images were used to examine LULC dynamic changes
in USA (Ahlqvist 2008, Xian et al. 2009, Jin et al. 2013). It takes much time and labour
cost to finish this work. Coarse spatial resolution images become a primary data source at
national and global LULC change detections (Hansen and DeFries 2004, Fraser et al.
2005, Le Hégarat-Mascle et al. 2005, Verbesselt et al. 2010b, Bontemps et al. 2012).
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Time series MODIS or SPOT VGT data sets provide potentials to detect forest distur-
bance in a large area (Mildrexler et al. 2007, Spruce et al. 2011, Bontemps et al. 2012). In
general, the changed areas are small and scattered, much smaller than the cell size of
MODIS data. The complexity of land-cover composition in coarse spatial resolution
image makes change detection a challenge. Integration of MODIS and Landsat images
has been used to detect LULC change (Hansen et al. 2008b), and more research is needed
to effectively integrate the multi-scale remote sensing data for conducting continental and
global LULC change.

7. Summary

Change detection is a comprehensive procedure that requires careful consideration for
each step: the nature of change detection problems, selection of remotely sensed data,
image preprocessing including geometric and atmospheric correction, extraction of sui-
table variables from remote sensing and GIS data, selection of suitable change detection
algorithms and evaluation of results. When the study area and the user’s needs are
defined, selection of suitable variables and corresponding algorithms has been an active
research topic for a long time. New techniques continue to appear due to new needs for
change detection contents and accuracy, and availability of new satellite images and other
ancillary data. Overall, per-pixel-based methods are common, especially when high and
medium spatial resolution images are used. Texture- and object-based methods become
valuable for change detection using high spatial resolution images. Coarse spatial resolu-
tion satellite imagery such as MODIS provides the potential to detect LULC change at
national and global scales, but generates challenges due to the mixed pixel problem. At a
regional scale, different kinds of sensor data with medium spatial resolution images have
provided new opportunities to integrate multi-sensor data to improve LULC change
detection. Data fusion at pixel, feature and decision levels based on different resolution
or sensor images has been proven to be promising in improving change detection
performance. As multiple sources of data covering remote sensing and ancillary data
are available, GIS-based techniques are valuable.

High-quality LULC change detection results at a local scale are required for manage-
ment and planning purposes or for use as reference data. The availability of sub-meter
spatial resolution satellite images provides a new platform to detect scattered and small
changes at a local scale, but the displacement, high spectral variation and shadow problem
produce a challenge for automatic change detection. Although use of texture- and
segmentation-based methods have proven to be valuable for reducing the spectral varia-
tion problem, more research is needed to automatically identify optimal parameters for
producing suitable textural and segment images. Alternately, integration of LiDAR and
high spatial resolution optical data is valuable to improve urban LULC change detection
at a local scale.

National and global LULC change data sets are required for many studies related to
climate change, environmental, demographic and economic conditions. However, devel-
opment of this data set using coarse spatial resolution images is a challenge and no
suitable techniques are available to conduct change detection using the multitemporal
MODIS or AVHRR data yet. More research is needed to develop the techniques to
integrate multi-scale remote sensing data to improve LULC change detection results.

Most of previous change detection studies are at a regional scale using medium spatial
resolution images such as Landsat, SPOT and radar. The same sensor data are usually used
in a change detection procedure, but a combination of multi-sensor data is also needed
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when the same optical sensor is not available due to the cloud cover problem. Data fusion
at feature and decision levels has been proven to be valuable in improving results. Since
satellite images are only available for about 40 years, use of multi-source data, such as
aerial photographs and GIS data can provide change detection results with a longer history
in some study areas. Difference in data format, structure, quality and spatial resolution
make change detection a challenge and GIS-based techniques provide important tools for
integration of multi-source data for change detection.

Different change detection algorithms have their own merits in extracting LULC
change information. Integration of the individual change detection results into a new
one using certain expert rules or fusion techniques can improve the results. Meanwhile,
most change detection techniques are used to detect LULC conversion, not for modifica-
tion. For vegetation ecosystem, it is even more important to develop suitable techniques to
detect vegetation modification to understand how human and nature-induced factors affect
vegetation dynamic change and their interactions. In particular, more research is needed to
examine changes of continuous variables at national and global scales using time series
MODIS data and multi-scale remote sensing data.
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