OPEN SCIENCE AND DATA:
FROM POLICIES AND PRACTICES TO OPPORTUNITIES AND CHALLENGES

Carthage Smith, OECD Global Science Forum
What do we mean by Open Science?

2015: Open science refers to efforts to make the outputs of publicly funded research more widely accessible in digital format to the scientific community, the business sector or society more generally.

2018: Open Science in its broadest sense refers to efforts to make the scientific process more open and inclusive for all relevant actors:
- Open access to publications
- FAIR data access
- Citizen engagement
Integrity and security in the global research ecosystem
OECD Recommendation on Access to Research Data from Public Funding (Jan 2021)

1/ Data governance for trust
2/ Technical standards and practices
3/ Incentives and rewards
4/ Responsibility, ownership and stewardship
5/ Sustainable infrastructures
6/ Human capital
7/ International co-operation for access to research data

EXPANDED SCOPE COVERS RESEARCH DATA, METADATA, ALGORITHMS, WORKFLOWS, MODELS, AND SOFTWARE (INCLUDING CODE)

1. Sustainable infrastructure

Research Infrastructures mobilisation in response to COVID-19: lessons learned

Virtual workshop hosted by the OECD and Science Europe
11 May 2021, via Zoom, 11:30-15:30 CET (Paris time)
Http://oe.cd/SCIENCEUworkshop
Objectives

1. Identify and describe existing revenue sources and business models
2. Test potential business models with various stakeholders, including funders
3. **Make policy recommendations to promote sustainable business models** for research data repositories
Elements of a successful business model

- Identify stakeholders
 - Data repositories
 - Data users
 - Research institutions
 - Research funders
 - Philanthropic funders
 - Policy makers

- Understand lifecycle phase
 - Investment funding
 - Development funding
 - Operational revenue
 - Transitional funding

- Demonstrate value
 - Measure impact
 - Make science case
 - Measure value
 - Make economic case
 - Inform and educate

- Identify revenue sources
 - Structural funding
 - Host institutional funding
 - Deposit-side charges
 - Access charges
 - Access charges
 - Services/facilities charges

- Develop product/service mix
 - Research data
 - Research facilities
 - Value-adding services
 - Contract services
 - Research services

- Understand cost drivers and match to revenues sources
 - Scale with ingest
 - Scale with use
 - Scale with value-adding
 - Scale with research priorities
 - Scale with policy mandates
<table>
<thead>
<tr>
<th>Funding Source</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural funding</td>
<td>• Compatible with open data principles.</td>
<td>• Fixed, multi-year may not scale easily.</td>
</tr>
<tr>
<td></td>
<td>• Longer-term stability.</td>
<td>• Competes with research funding.</td>
</tr>
<tr>
<td></td>
<td>• Larger-scale and efficiencies.</td>
<td>• Too many eggs in few baskets.</td>
</tr>
<tr>
<td></td>
<td>• Flexible as to allocation.</td>
<td></td>
</tr>
<tr>
<td>Host or institutional funding</td>
<td>• Compatible with open data principles.</td>
<td>• Limited purview, with focus on local community.</td>
</tr>
<tr>
<td></td>
<td>• Longer-term stability.</td>
<td>• May lead to fragmentation of domain data and lower interoperability.</td>
</tr>
<tr>
<td></td>
<td>• Efficiencies through sharing services.</td>
<td>• Limited incentive to add value to data and develop related services.</td>
</tr>
<tr>
<td></td>
<td>• Close to researchers (customers).</td>
<td></td>
</tr>
<tr>
<td>Data deposit fees</td>
<td>• Compatible with open data principles.</td>
<td>• Cost disincentive to depositing, so depends on strong mandates.</td>
</tr>
<tr>
<td></td>
<td>• Demand oriented and scales with demand (data ingest).</td>
<td>• May lead to low level of curation to contain costs (price).</td>
</tr>
<tr>
<td></td>
<td>• Researchers price sensitivity ensures cost constraint.</td>
<td>• May be difficult for repository to compete for deposits with comparable repositories that do not charge.</td>
</tr>
<tr>
<td></td>
<td>• Open data is part of research and its funding.</td>
<td></td>
</tr>
<tr>
<td>Data access charges</td>
<td>• Users pay for what they want, so funding reflects value.</td>
<td>• Not compatible with open data principles and many funder mandates, limiting the potential market size.</td>
</tr>
<tr>
<td>(subscriptions or use fees)</td>
<td>• More market-oriented approach may provide incentive for cost constraint.</td>
<td>• Charges limit use and will reduce the value of data.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Revenue scales with use and not ingest or curation costs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Vulnerable to funding cuts.</td>
</tr>
<tr>
<td>Diversification of revenue</td>
<td>• No single source of failure.</td>
<td>• May lead to higher transaction costs (managing multiple funding sources).</td>
</tr>
<tr>
<td>sources</td>
<td>• Can maintain compatibility with open data principles.</td>
<td>• May lead to Mission drift.</td>
</tr>
<tr>
<td></td>
<td>• Flexible and enables experimentation with new services.</td>
<td></td>
</tr>
</tbody>
</table>
1. All stakeholders should recognise that research data repositories are an essential part of the infrastructure for open science.

2. All research data repositories should have a clearly articulated business model.

3. Sponsors need to consider the ways in which data repositories are funded, and the pros and cons of various funding mechanisms in different circumstances.

4. Research data repository business models are constrained by, and need to be aligned with, policy regulation (mandates) and incentives (including funding).

5. In the context of financial sustainability, opportunities for cost optimisation should be explored.
2. International cooperation

Enhancing access to research data during crises
Lessons learned from the COVID-19 pandemic

Virtual workshop hosted by the Research Data Alliance (RDA)
23 April 2021, via Zoom, 12:30-16:00 CET (Paris time)
Http://oe.cd/RDAworkshop
Objectives

Establish principles and policy actions that can support open and sustainable international research data networks:

1. When is a data network needed?
2. How can governments use networks to maximize research data openness and reuse?
3. What is the best governance model for a particular network?
4. What interoperability arrangements are necessary for the effective operation of the network?
5. What business models can sustain a network over time?
Findings

• The most successful networks have engaged and **supportive users** who clearly understand and value the services of the network.

• The top issue faced by data networks in open sharing of data is **the varying attitudes and policies across countries**.

• Different research communities require **different data networks** because **the cultures** of data sharing vary.

• The most difficult aspects of **interoperability** are rooted in **human relationships and trust**.

• Developing a **coherent and sustainable business model** is a central challenge for virtually all data networks.
Recommendations

1. work toward **common definitions of, and agreements on, open data**. What is open data in different domains?

2. work toward commonly agreed and enforced **legal and ethical frameworks for the sharing of different types of public research data**.

3. Funders and host institutions should view internationally coordinated data networks as a **long-term strategic investment**

4. Networks should have clear business models, including value propositions and **measures of success** that are relevant to their different stakeholders and these measures **should be monitored**.
3. Digital Skills

Scientific advice in crises: Lessons learned from COVID-19

Virtual Workshop organised by the OECD Global Science Forum (GSF)
3-4 March 2022, 12.00-16.00 CET (Paris time)
oecd/scientific-advice
Address the following questions:
1. What is known about the digital workforce needs for data intensive science?
2. What is needed to build a digitally skilled research workforce?

And make recommendations for policy action
Digital skills: Different needs in domains

Figure 5.3. Most important skills for scientific authors’ research work

Percentage of authors who deem each type of skill as important

Digital skills, frameworks & roles

- Developing Software
- Understanding Data
- Conducting Research
- Advising on Law & Ethics

Roles:
- Data Analyst
- Research Software Engineer
- Data Steward
- Researcher

Skills:
- Conducting Research
- Advising on Law & Ethics
Policy actions required in 5 key areas

- **Integrate digital workforce capacity development into broader science policy frameworks and actions, e.g. for open science and research integrity.**

- **Identify the key competencies, skills and roles required for data-intensive science in different contexts.**

- **Support training in foundational digital skills and more specialized skills for scientists and research support professionals.**

- **Support development of communities for new professional roles, learners and trainers.**

- **Implement changes in academic evaluation and reward systems in order to attract and retain diverse digitally skilled staff.**
Enhancing access to research data during crises: lessons learned from the COVID-19 pandemic

Virtual workshop hosted by the Research Data Alliance (RDA)
23 April 2021, via Zoom, 12:30-16:00 CET (Paris time)
Http://oe.cd/RDAworkshop

Enhancing access to research data during crises: lessons learned from the COVID-19 pandemic - OECD
Lessons learned

1. **Prior investment in** data infrastructure and networks is there to be leveraged during crises.

2. There are technical obstacles in relation to achieving FAIR data but **the major challenge is data governance and this stretches beyond research**. There is need for a pandemic data response and management system that is publically monitored, controlled and accountable.

3. **Citizens and data subjects need to be included in co-designing data governance arrangements** for individual projects and for data systems as a whole. A global system of systems, based on national and regional networks is more likely to be effective than a single rigid global architecture.

4. Real time data access is difficult but is essential for managing a pandemic. From the outset, there is a need to **integrate health services and public health surveillance data, with research needs** and vice-versa.

5. There is a need to support incremental steps towards a global FAIR data system and **keep moving forward with ‘a coalition of the willing’**. Top down visions, frameworks and direction need to integrated with bottom-up community-led efforts.
Lessons learned

6. There are significant gaps and biases in the global data on COVID-19, both in terms of geographic coverage and lack of representation of certain populations groups. **Inclusivity and inclusiveness should be an explicit aim for pandemic data response systems**

7. Not all data can, or should, be open but it should be FAIR and all meta-data should be open and FAIR. Open data (and software and workflows) enable many - public and private sector - actors to contribute in the response to crises.

8. There is a balance to be achieved between **standardisation and conformity versus diversity and innovation** but making data FAIR should be part of routine research practice and the adoption of community recognised standards is critical.

9. **The incentive system for researchers needs to change** and how we evaluate the contribution of researchers in response to COVID-19 will be a good test of this.

10. International fora, such as the Research Data Alliance, which bring together **different actors from different disciplines and different countries play an essential role in building the technical and social bridges** that are necessary to ensure the optimal use of data for research and policy-making during crises.
Thank You

OECD iLibrary (oce.d-ilibrary.org)

OECD Global Science Forum – OECD