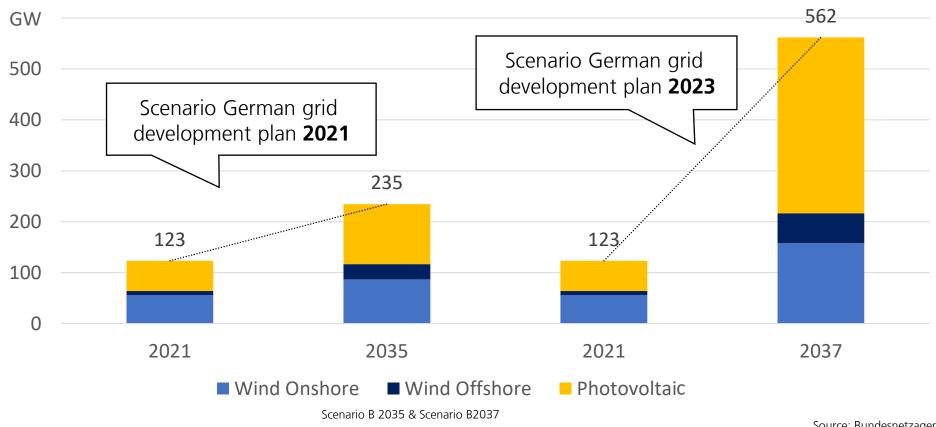


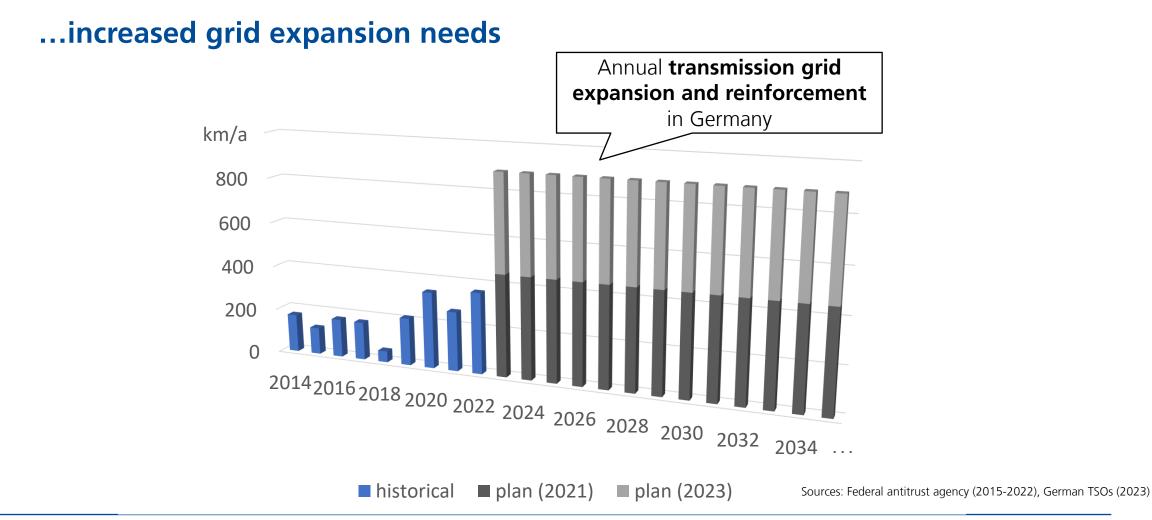
Pillars for a sustainable energy market design in Europe

Session: Policy and Market Requirements for a Resilient and Reliable Low-Carbon Energy System

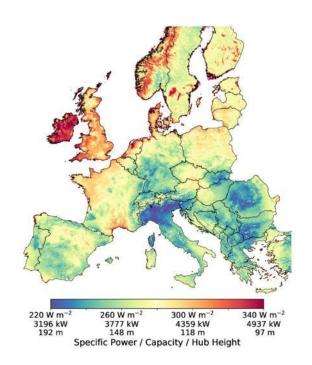
10th German-Brazilian Dialogue, São Paulo, May 16th & 17th, 2023

European electricity markets in a nutshell

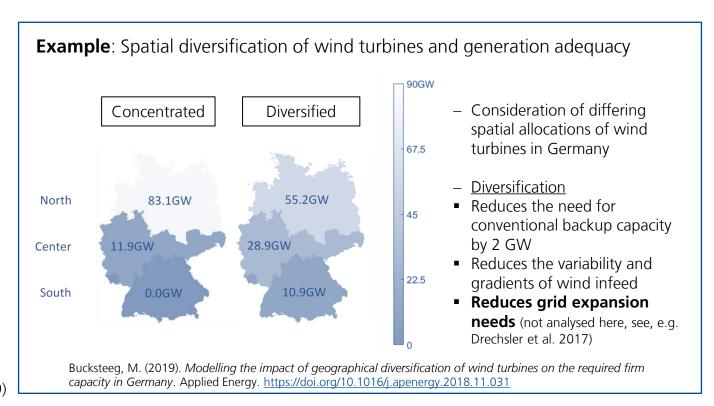




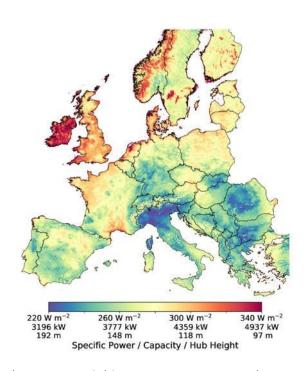
Moving targets: accelerated RES expansion...



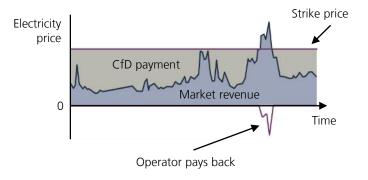
Three pillars


- 1. Create local incentives
- 2. Strengthen coordination
- 3. Enhance participation

Output-based renewables support schemes compromise local incentives



Wind onshore potential in Europa, Source: Ryberg et al. (2019)


Output-based renewables support schemes compromise local incentives

Design options: Contracts for difference (CfD) and nodal pricing

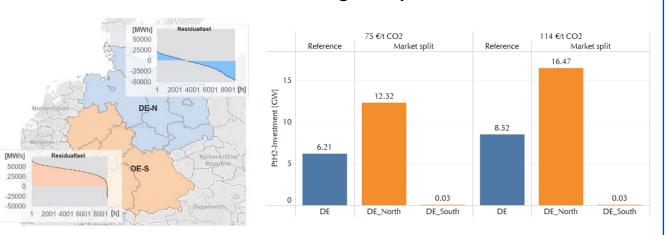
",Yardstick CfD" or "Financial CfD"

- Independent from actual output, e.g. forecast or reference turbine (Newbery, 2022; Schlecht et al., 2023)
- BUT: local disincentives remain

More granular locational pricing

- Nodal prices with financial transmission rights → incentivise diversification
- Moreover, a limitation of the duration of CfDs by full load hours (and not time) → reduce the concentration

Wind onshore potential in Europa, Source: Ryberg et al. (2019)

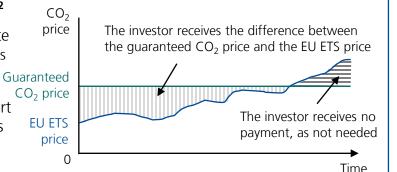

Large bidding zones in electricity markets weaken local incentives for flexibilities

Bidding zones in Europe

Example: Market splitting and investments in electrolyser capacity

- Splitting of the German bidding zone incentivises investments in the North
- Decrease in north-south transit reduces grid expansion needs

Breder, M. S., Meurer, F., Bucksteeg, M., & Weber, C. (2022). *Spatial Incentives for Power-to-Hydrogen through Market Splitting*. Working Paper. https://doi.org/10.2139/ssrn.4173211


Large bidding zones in electricity markets weaken local incentives for flexibilities

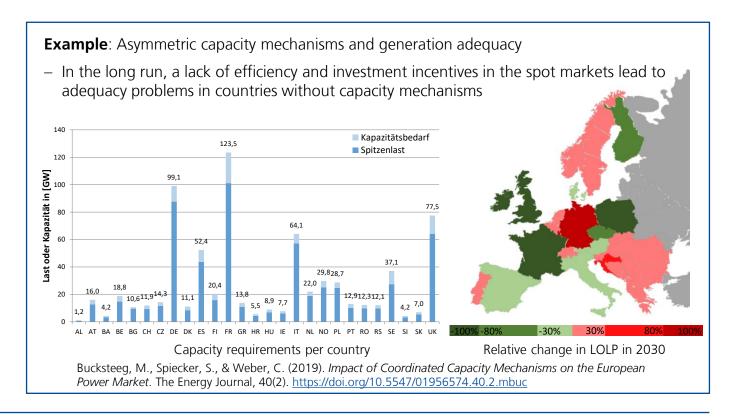
Design options: Carbon contracts for difference (CCfD) and nodal pricing

Carbon contracts for difference \rightarrow H₂

- CCfDs for electrolytic hydrogen relate to the user side (renewable H₂ replaces reference technology)
- BUT: costs for electricity and transport drive local incentives for electrolysers

More granular locational pricing

- Nodal prices with financial transmission rights, locally differentiated network charges or at least smaller bidding zones
- Moreover, the regulator may regulate the size, duration and location of investments (e.g. required spatial correlation with renewables infeed)



2. Strengthen coordination

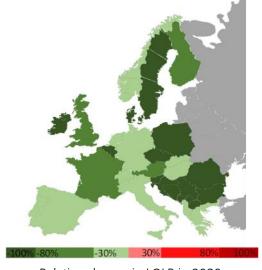
Status-quo of capacity mechanisms provides a heterogenous picture in Europe

Capacity mechanisms in Europe, Source: ACER (2022)

2. Strengthen coordination

Status-quo of capacity mechanisms provides a heterogenous picture in Europe

Capacity mechanisms in Europe, Source: ACER (2022)

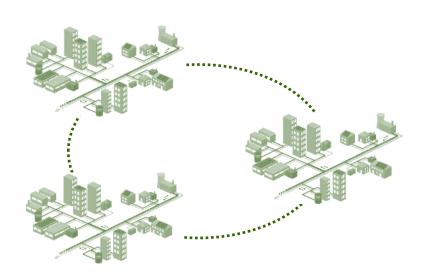

Design options: A European capacity mechanism or coordinated ones

First best: A European capacity mechanism

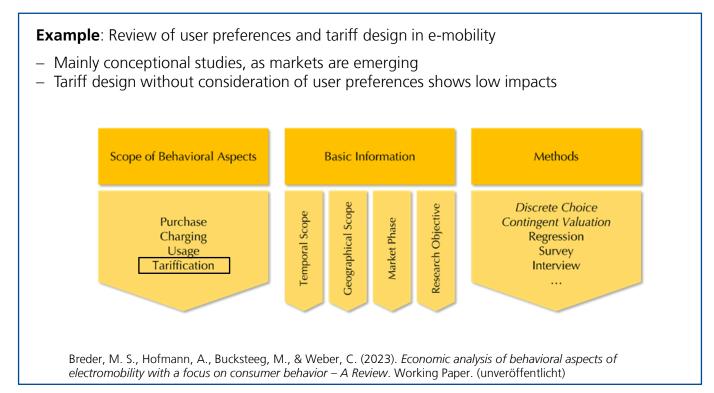
- Lower capacity requirements and maximisation of synergy effects
- Compatible with the single European market
- BUT: politically difficult to enforce

Second best: Coordinated capacity mechanisms

- Joint sizing of capacity requirements (based on a common adequacy level)
- Maintains sovereignty of member states by national capacity mechanisms

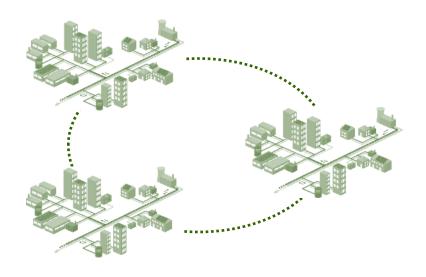


Relative change in LOLP in 2030



3. Enhance participation

Energy communities can reduce the need for grid expansion


System of systems

3. Enhance participation

Energy communities can reduce the need for grid expansion

System of systems

Design options: Actor-oriented design of products and tariffs

Energy communities and central markets

Aggregation of decentral energy for participation in central markets

Energy communities and local markets

- Provision of flexibility (energy communities ←→ grid operators)
 - System-friendly organisation of flexibilities to reduce grid congestion
 - Tariff design requires knowledge of the value of flexibility from the perspective of users and grid operators
- Energy sharing (consumers ←→ producers)
 - Requires instruments for coping with the uncertainty and complexity of lowcarbon energy systems

Three pillars

- 1. Create local incentives → implement more granular locational pricing
- 2. Strengthen coordination \rightarrow avoid unilateral actions
- 3. Enhance participation \rightarrow design consumer-oriented products and tariffs

References

- ACER (2022). ACER Report on Security of EU electricity supply in 2021:
 Report on Member States approaches to assess and ensure adequacy.
 https://acer.europa.eu/sites/default/files/documents/Publications/ACER_S_ecurity_of_EU_Electricity_Supply_2021.pdf
- Breder, M. S., Hofmann, A., Bucksteeg, M., & Weber, C. (2023).
 Economic analysis of behavioral aspects of electromobility with a focus on consumer behavior A Review. Working Paper. (unveröffentlicht)
- Breder, M. S., Meurer, F., Bucksteeg, M., & Weber, C. (2022). Spatial Incentives for Power-to-Hydrogen through Market Splitting. Working Paper. https://doi.org/10.2139/ssrn.4173211
- Bucksteeg, M., Spiecker, S., & Weber, C. (2019). Impact of Coordinated Capacity Mechanisms on the European Power Market. The Energy Journal, 40(2). https://doi.org/10.5547/01956574.40.2.mbuc
- Bucksteeg, M. (2019). Modelling the impact of geographical diversification of wind turbines on the required firm capacity in Germany. Applied Energy.
 https://doi.org/10.1016/j.apenergy.2018.11.031
- Bundeskartellamt (2015-2022). Monitoringbericht.
 https://www.bundeskartellamt.de

- Bundesnetzagentur (2020, 2022). Genehmigung des Szenariorahmens. https://www.netzentwicklungsplan.de
- EU Kommission (2023). Electricity Market Design. Consultation
 Document. https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/13668-Electricity-market-reform-of-the-EUs-electricity-market-design_en
- Newbery, David (2023). Efficient Renewable Electricity Support:
 Designing an Incentive-compatible Support Scheme. The Energy Journal. https://doi.org/10.5547/01956574.44.3.dnew
- Ryberg et al. (2019). The future of European onshore wind energy potential: Detailed distribution and simulation of advanced turbine designs. Energy. https://doi.org/10.1016/j.energy.2019.06.052.
- Schlecht, Ingmar; Maurer, Christoph; Hirth, Lion (2023): Financial Contracts for Differences, ZBW - Leibniz Information Centre for Economics, Kiel, Hamburg. http://hdl.handle.net/10419/268370