Contribuição das Mudanças da Terra ao Balanço dos Gases de Efeito Estufa dos Biocombustiveis

Contributions of Land Use Change to the Greenhouse Gas Budget of Biofuels

> Kristina J. Anderson-Teixeira June 16, 2009

Life Cycle Analysis for Greenhouse Gases (GHG)

Davis, Anderson-Teixeira, & DeLucia (2009)

Estimates of Greenhouse Gas Displacement by Biofuels

Davis, Anderson-Teixeira, & DeLucia (2009)

Life Cycle Analysis

Davis, Anderson-Teixeira, & DeLucia (2009)

Outline

- 1. Changes in soil carbon under biofuel crops
- 2. Quantifying the full GHG effects of land use change

GCB Bioenergy (2009) 1, 75-96, doi: 10.1111/j.1757-1707.2008.01001.x

Changes in soil organic carbon under biofuel crops

KRISTINA J. ANDERSON-TEIXEIRA*, SARAH C. DAVIS†, MICHAEL D. MASTERS* and EVAN H. DELUCIA*†‡

Conceptual Approach

Time in cultivation

Maize residue

Sugarcane

Miscanthus

Switchgrass

Mixed native/ prairie

Methods

- Data compiled from published studies
 - Various ages, depths measured, previous land uses, harvest practices, etc.
- SOC measured in sites of ≥ 2 known ages (one control)
- Units
 - SOC_c (g C/kg soil) SOC concentration for a certain depth increment
 - SOC_a (Mg C ha⁻¹)- SOC per hectare, measured to various depths
 - When not reported, calculated from ${\rm SOC}_{\rm c}$ and estimated bulk density

Forced- and Free- Intercept Models

- Forced-intercept (time 0 = control)
 - SOC decreases under sugarcane
- Free-intercept
 - Land conversion loss in sugarcane followed by SOC increase

Estimated net SOC change: area basis

Percent Change in SOC_c (Concentration Basis) by Depth

- A) <u>Maize with residue removal-</u> C loss at all depths
- B) <u>Sugarcane</u>- C loss in shallow soils, gain in deeper soils. Gain through time.
- C) <u>Miscanthus</u>- C gains through time at all depths
- D) <u>Switchgrass</u>- C gains through time at all depts
- E) <u>Mixed Native (Prairie)-</u> C gains through time at all depths, particularly shallow

Sugarcane Data

- Locations
 - South Africa (n=6)
 - Australia (n=4)
 - Brazil (n=2)
 - Alagoas
 - São Paulo
 - Papua New Guinea (n=2)
 - Belize (n=2)
 - Hawaii (n=2)
 - Ecuador (n=1)
- Previous land use
 - Grass (n=10)
 - Forest (n=8)
 - Other (n=2)

Data is not representative of situation in São Paulo.

Quantifying the full GHG effects of land use change

GHG Effects of Land Use Change

• Define GHG Value (GHGV) of ecosystems

GHG effect of land use change = GHGV_{new} - GHGV_{old}

Greenhouse Gas Value of Land (GHGV)

Total greenhouse gas benefits of maintaining an ecosystem.

Includes both biomass storage and GHG flux

Greenhouse Gas Value of an Ecosystem (GHGV)

$$GHGV = S_{GHG} - \int_0^t F_{GHG}$$

$$\uparrow$$

Storage of materials vulnerable to release as GHG's upon disturbance.

Mg CO₂-eq. ha⁻¹

Cumulative flux of GHG's (Mg CO_2 -eq. ha⁻¹ yr⁻¹), integrated over time span of interest (yr).

Mg CO₂-eq. ha⁻¹

- Includes CO₂, CH₄, N₂O
- Positive values indicate GHG benefit.

Direct LUC $\Delta GHG_{LUC}^{D} = -(GHGV_{biofuel} - GHGV_{displaced}^{D})/t$ GHG value of GHG value of biofuel Time scale displaced ecosystem of interest ecosystem Indirect LUC $\Delta GHG_{LUC}^{I} = -f \cdot (GHGV_{displacing_ag} - GHGV_{displaced}^{I}) / t$ GHG value of GHG value of Time scale ILUC/ displaced ecosystem displacing agriculture of interest DLUC

GHG effects of Direct Land Use Change

 $\Delta GHG_{LUC}^{D} = -(GHGV_{biofuel} - GHGV_{displaced}^{D})/t$

GHG effects of Indirect Land Use Change

$$\Delta GHG_{LUC}^{I} = -f \cdot (GHGV_{displacing_ag} - GHGV_{displaced}^{I}) / t$$

What LCA's are Missing: DLUC

 $\Delta GHG_{LUC}^{D} = -(GHGV_{biofuel} - GHGV_{displaced}^{D})/t$

- Substantial benefit to replacing agricultural land (benefit of >2 Mg CO₂-eq/ha/yr)
 - Reduced N₂O emissions
 - Cessation of tillage → increased SOC
- Full cost of clearing native ecosystems for biofuel crops
 - Displaced carbon sequestration
 - Emissions from land clearing
- Substantial costs to growing biofuels on "abandoned" land that would otherwise become forest (8-13 Mg CO₂-eq/ha/yr).
 - Displaced carbon sequestration

What LCA's are Missing: ILUC

 $\Delta GHG_{LUC}^{I} = -f \cdot (GHGV_{displacing_ag} - GHGV_{displaced}^{I}) / t$

- Full cost of displacing native ecosystems by biofuels
 - Emissions from burning
 - Displaced carbon sequestration
 - Negative GHGV of cropland
- Amazon replaced by crop:
 - 23.8 Mg CO₂-eq/ha/yr for 50 yr. time frame
 - Almost doubled from previous estimate.
- Depends on value of f

Conclusions

- At present, LCA's do not adequately account for GHG contributions from land use change.
- GHG contributions from land use change can be substantial.

Acknowledgements

Co-authors:

- Evan DeLucia
- Sarah Davis
- Mike Masters

