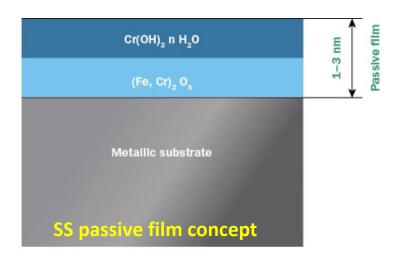


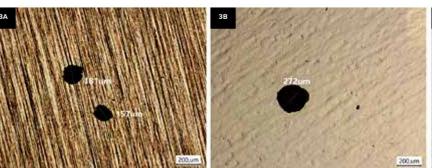
ASEPSIS . CORROSION. WELDING

High Performance Surfaces to Tanks and Pipelines of Pharmaceutical and Food-grade Industries

Luis Henrique Guilherme, PhD

Group ACW Engineering
Technical Director
luisguilherme@acwengenharia.com.br
www.groupacw.com





- ACW is a Materials Science & Engineering company
- Specialized in stainless steels facilities for bioprocessing (tanks / pipelines) in contact with life science & food-grade products
- Delivery its services as Chemical Passivation Treatments and Electropolishing

Life science & food-grade products

Expectation vs. reality

Pharmaceutical

Cosmetics

Food

Beverage, juice and water

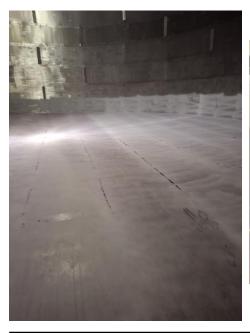
Brewery

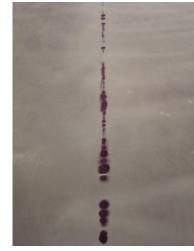
Biotechnology and Fermentation

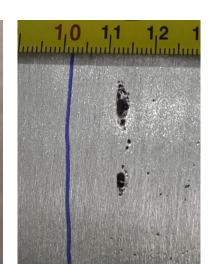
Dairy

Agriculture

Chemical and ingredients


Smooth and cleanability surface are a must!

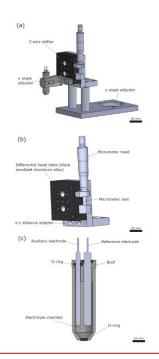

1) Mandatory problems are:


- Localized corrosion
- Rouge contamination
- Biofilm adhesion
- 2) Corrective maintenance

3) GAP OF TECHNOLOGY: No way to measure the passivation properties

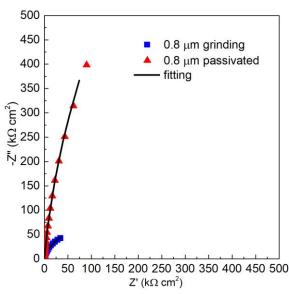
www.groupacw.com

ACW's Science Based Solutions



PassivityScan: qualify surfaces for bio-operation

- Customized Portable electrochemical micro-cell
- It is a system able to measure the passivation properties
- Surface is qualified according to a clear acceptance criteria
- System has a granted patent



Galvanostatic passivation treatment

- Grow a passive film under controlled conditions
- Combine a specific weak acid, current density and high °C
- Reach the highest Chromium level on the passive film
- Cr:Fe > 2.5:1 for large areas

ACW Market & Strategic Plan

ACW's headquarter is based on São Paulo / Brazil

Multinational clients with industrial units in South & North America and Europe

• All industrial sites branches apply the same/best tecnologies

ACW North America

- Started a new branch in Canada in 2023
- Began with a collaborative research with McMaster University
- Move to the McMaster Innovation Park as an INTERNATIONAL STARTUP
- Run projects to Pharmaceutical industries at the Great Toronto Area

ACW Europe up to 2027

Follow the same way applied to North America

Spain

- Pharmaceutical Industries (€27.9B in 2022)
- FIAB Federación Española de Industrias de la Alimentación y Bebidas: turnover of €120B and employs 436,700 people

Thank you!

Luis Henrique Guilherme, PhD

Group ACW Engineering
Technical Director
luisguilherme@acwengenharia.com.br
www.groupacw.com

What are ACW doing to help?

How to measure ON-SITE the passivation properties

PassivityScan – granted patent portable

electrochemical micro-cell

Both applied science researchs were supported by FAPESP Innovative Research in Small Business (PIPE)

How to improve the stainless steel surface throught chemical treatment

Galvanostatic passivation treatment

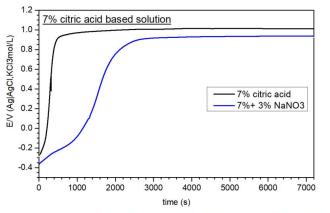


Figura 8. SKID 100 e bico aspersor diâmetro 0.66 mm e ângulo 95°.

Localized corrosion

Rouge & oxidation

Galvanostatic Passivation Treatment

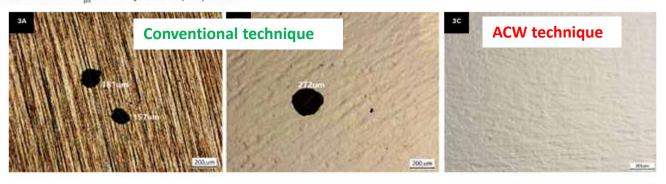


Table 5: Atomic composition of 316L stainless steel surfaces obtained by XPS.

Sample	Cr (at.%)	Fe (at.%)	Ni (at.%)	Molybdenum (Mo) (at.%)	Manganese (Mn) (at.%)	Cr:Fe Ratio	
As received	23.9	65.2	5.7	3.0	2.2	0.4	
0.8 μm grinding	29.7	62.1	2.1	5.1	1.0	0.6	
$0.8~\mu\text{m passivated}$	52.6	34.9	5.6	5.6	1.3	1.5	Conventional technique
0.3 μm EP	51.2	31.4	4.7	11.6	1.2	1.6	
0.3 μm EP passivated	55.1	27.5	10.7	5.6	1.1	2.0	ACW technique
$0.2~\mu m$ grinding	35.1	59.7	1.2	3.8	1.2	0.6	
0.2 μm passivated	61.9	25.2	4.8	7.1	1.0	2.5	ACW technique
0.05 μm EP	34.0	50.6	6.8	7.8	0.8	0.7	
0.05 μm EP passivated	57.4	28.5	7.2	5.1	1.8	2.1	ACW technique

Figure 3: Optical micrographs of 316L stainless steel scanned surface area after CPP measurements of A: Ra = 0.8 μ m grinded surface with E_{pit} = +716 mV; B: Ra = 0.3 μ m electropolished surface with E_{pit} = +716 mV; and C: Ra = 0.3 μ m electropolished and passivated surface without E_{pit}. Electrolyte: 3.5% (m/v) NaCl.

How does ACW run the business?

2020

Headquarter: Araraquara city, São Paulo State, Brazil

- Based on a factory 450 m²
- Pharma, Food, Beverage, Dairy,Biotechnology
- 72+ projects in 2024

2023Branch in North America:
Hamilton, Ontario, Canada.

- Based on The Innovation Park of McMaster
 University (International startup)
- Pharma & cosmetic industries
- 15+ projects in 2024

2027 Branch in Europe

- Start from the collaborative research
- Lanch as international startup up to2027

ASME BPE and the requirements for surface com into contact with product or raw material:

- ✓ No oxidation: Stainless steel (normally grade 316)
- ✓ Smooth: Surface finished SF1 or SF4
- ✓ Passivated: Cr:Fe ratio > 1.3:1 (X-Ray Photoelectron Spectroscopy)
- ✓ Regular monitored: product microbiology analysis, boroscope, visual inspection, ferroxyl test
- ✓ Regular chemical passivation treatment (interval of 12 24 months)

What is the problem??

- ✓ No oxidation: Stainless steel (normally grade 316)
- ✓ Smooth: Surface finished SF1 or SF4
- ✓ Passivated: Cr:Fe ratio > 1.3:1 (X-Ray Photoelectron Spectroscopy)
- ✓ Regular monitored: product microbiology analysis, boroscope, visual inspection, ferroxyl test
- ✓ Regular chemical passivation treatment (interval of 12 24 months)

Galvanostatic Passivation Treatment

1.0 -E/V (Ag|AgCI,KCI3mol/L) 0.6 -- 7% citric acid -7%+ 3% NaNO3 -0.2 3000 1000 2000 5000 6000 time (s)

7% citric acid based solution

Figura 2. Desenho esquemático do SKI-500 e seu set-up para o tratamento de passivação galvanostática.

PassivityScan

Table 2: Electrochemical techniques and respective acceptance criteria for 316L stainless steel.

Tank Conditions	Objective	Technique Performance Parameters		Acceptance Criteria
Passivated surface in qualification		EIS	R_p , Q_{CPE} , η^1 , C_{eff}	Passive film thickness (δ): 1 nm < δ < 3 nm
	Passivation level			$R_p\!\ge 2.0~\text{M}\Omega~\text{cm}^2$
		СРР	E _{corr} , E _{pit} , E _{prot} passivation level	E _{prot} -E _{corr} > 350 mV
		Combining OCP and EIS		OCP ≥ + 10 mV
	Early rouge and corrosion detection		E _{corr} , R _p , Q _{CPE} , η ¹ , C _{eff} , EEC (equivalent electrical circuit)	(Ag AgCl KCl 3 mol/L)
In operation process				$R_p\!\ge 0.5\; M\Omega\; cm^2$
				1 nm < δ < 3 nm

¹ Constant phase exponent.

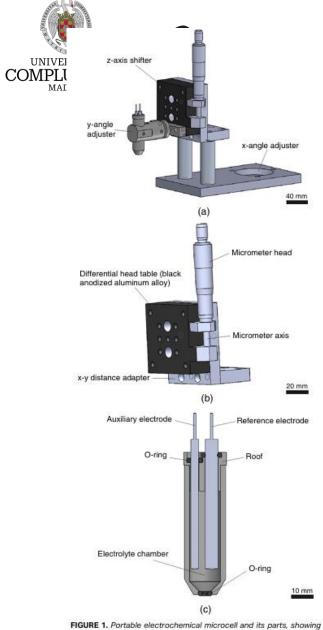
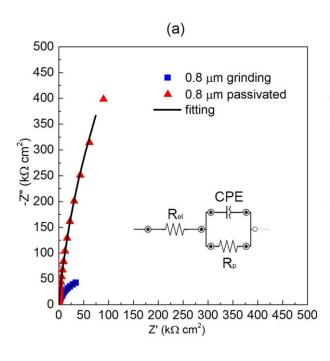
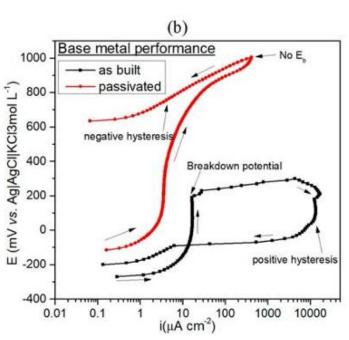


FIGURE 1. Portable electrochemical microcell and its parts, showing (a) 3D design, (b) z-axis shifter using a sliding stage micrometer, and (c) microcell body section.




PassivityScan

