Circadian Timekeeping and Entrainment in Neuronal Clock Networks

Orie T. Shafer

The Advanced Science Research Center, The Graduate Center
The City University of New York
Orie.Shafer@asrc.cuny.edu

Life is a rhythm.

A Simple Model of the Circadian System

The proper daily timing depends on two phenomena: circadian **timekeeping** and **entrainment.**

Drosophila and the Molecular Circadian Clock

Drosophila and the Molecular Circadian Clock

Behavioral rhythms are driven by molecular rhythms.

Molecular clocks are required in small islands of the brain for behavioral, endocrine, and physiological rhythms.

What is the neuronal basis of circadian timekeeping? How is the circadian clock neuron network organized?

A mouse brain is built of ~75,000,000 neurons.

Each suprachiasmatic nucleus comprises ~20,000 neurons.

The entire fly CNS consists of ~100,000 neurons.

Each hemisphere of the fly brain contains ~75 "clock neurons."

The Neuronal Clocks of the *Drosophila* Brain: Simplicity, Stereotypy, Genetic Malleability

Network Properties of Circadian Timekeeping in the *Drosophila* brain.

- Cellular Characterization of the Molecular Clock in the Clock Neuron Network
- Anatomical Characterization of the Clock Neuron Network
- Genetic Manipulation of Neuronal Clocks
- Analysis of Sleep/Activity Rhythms and Entrainment
- Live Imaging (Ca²⁺ and cAMP) of Clock Neuron Physiology.
- Analysis of Functional Connectivity.

Network Properties of Circadian Timekeeping and Entrainment in the *Drosophila* Brain

Human Circadian Rhythms

Humans display significant variation in their phase angle of entrainment.

The distribution chronotype is replicable in large samples across cultures.

Horne-Östberg Morningness/Eveningness Scores

Human Chronotypes Using the Midpoint of Sleep on Free Days (MSF)

The average work start time in the U.S. is 7:55AM (7:59 for schools).

Average free day sleep starts at 12:30AM and ends at 8:30AM

Whose schedule are we keeping?

Social Jet Lag (SJL)

Late chronotypes experience chronic social jet-lag and its apparent behavioral consequences.

Chrontoype depends on the environmental context.

The Modern Light Environment and Chronotype

Circadian entrainment rests at the heart of modern circadian dysfunction and its negative health consequences.

Under ancestral/natural conditions, **two clocks** determined our daily rhythms: **The Sun Clock and the Internal Clock**

In modern societies **three clocks** determine our daily rhythms: The **Sun Clock**, The **Internal Clock**, and the **Social Clock**

Circadian entrainment rests at the heart of modern circadian dysfunction and its negative health consequences.

In modern societies **three clocks** determine our daily rhythms: The **Sun Clock**, The **Internal Clock**, and the **Social Clock**

Clocks, Entrainment, Light, and Health: A Need for Interdisciplinary Research

